
If the zeros of the polynomial $ f\left( x \right) = k{x^3} - 8{x^2} = 5 $ are alpha - beta, alpha and alpha + beta then find the value of k.
Answer
464.1k+ views
Hint: The given polynomial is a cubic polynomial and to find the value of k, we are going to use three relations between the zeros of the polynomial and the coefficients of the polynomial.
$ \Rightarrow \alpha + \beta + \gamma = \dfrac{{ - b}}{a} $
$ \Rightarrow \alpha \beta \gamma = \dfrac{{ - d}}{a} $
$ \Rightarrow \alpha \beta + \beta \gamma + \alpha \gamma = \dfrac{c}{a} $
Complete step-by-step answer:
In this question, we are given a cubic polynomial and we are given that its zeros are $ \alpha - \beta $ , $ \alpha $ and $ \alpha + \beta $ and we are supposed to find the value of k.
Given polynomial: $ k{x^3} - 8{x^2} = 5 $
$ \Rightarrow k{x^3} - 8{x^2} - 5 = 0 $
Here, $ a = k,b = - 8,c = 0,d = - 5 $
Now, this is a cubic polynomial and we need to find the coefficient of $ {x^3} $ .
For finding the value of k, we are going to use the relations between the zeros of the polynomial and the coefficients of the polynomial.
Sum of zeros
First relation is that the sum of the zeros of a cubic polynomial is $ \dfrac{{ - b}}{a} $ .
$ \Rightarrow \alpha + \beta + \gamma = \dfrac{{ - b}}{a} $
$
\Rightarrow \alpha + \beta + \alpha + \alpha - \beta = \dfrac{{ - b}}{a} \\
\Rightarrow 3\alpha = \dfrac{{ - \left( { - 8} \right)}}{k} \;
$
$ \Rightarrow 3\alpha = \dfrac{8}{k} $
$ \Rightarrow k = \dfrac{8}{{3\alpha }} $ - - - - - - - - - - (1)
Product of zeros
Second relation is that the product of the zeros of a cubic polynomial is $ \dfrac{{ - d}}{a} $ .
$ \Rightarrow \alpha \beta \gamma = \dfrac{{ - d}}{a} $
$ \Rightarrow \left( {\alpha - \beta } \right)\left( {\alpha + \beta } \right)\left( \alpha \right) = \dfrac{{ - \left( { - 5} \right)}}{k} $
Now, we know that $ \left( {a - b} \right)\left( {a + b} \right) = {a^2} - {b^2} $ . Therefore,
$ \Rightarrow \left( {{\alpha ^2} - {\beta ^2}} \right)\left( \alpha \right) = \dfrac{5}{k} $
Now, from equation (1), substitute the value of k.
$ \Rightarrow \left( {{\alpha ^2} - {\beta ^2}} \right)\left( \alpha \right) = \dfrac{5}{{\dfrac{8}{{3\alpha }}}} = \dfrac{{5 \times 3\alpha }}{8} $
$ \Rightarrow \left( {{\alpha ^2} - {\beta ^2}} \right) = \dfrac{{15}}{8} $
$ \Rightarrow \left( {{\alpha ^2} - {\beta ^2}} \right) = \dfrac{{15}}{8} $
\[ \Rightarrow {\beta ^2} = {\alpha ^2} + \dfrac{{15}}{8}\] - - - - - - (2)
Sum of product of roots
Third relation is that the sum of product of zeros of a cubic polynomial is $ \dfrac{c}{a} $ .
$ \Rightarrow \alpha \beta + \beta \gamma + \alpha \gamma = \dfrac{c}{a} $
$ \Rightarrow \alpha \left( {\alpha - \beta } \right) + \left( {\alpha - \beta } \right)\left( {\alpha + \beta } \right) + \left( {\alpha + \beta } \right)\alpha = \dfrac{0}{k} $
Opening the brackets, we get
$
\Rightarrow \alpha \left( {\alpha - \beta } \right) + \left( {\alpha - \beta } \right)\left( {\alpha + \beta } \right) + \left( {\alpha + \beta } \right)\alpha = \dfrac{0}{k} \\
\Rightarrow {\alpha ^2} - \alpha \beta + {\alpha ^2} - {\beta ^2} + {\alpha ^2} + \alpha \beta = 0 \\
\Rightarrow 3{\alpha ^2} - {\beta ^2} = 0 \\
$
Now, from equation (2), we get
$
\Rightarrow 3{\alpha ^2} - \left( {{\alpha ^2} + \dfrac{{15}}{8}} \right) = 0 \\
\Rightarrow 3{\alpha ^2} - {\alpha ^2} - \dfrac{{15}}{8} = 0 \;
$
$ \Rightarrow 2{\alpha ^2} = \dfrac{{15}}{8} $
Now, from equation (1), $ \alpha = \dfrac{8}{{3k}} $
Therefore,
\[
\Rightarrow 2{\left( {\dfrac{8}{{3k}}} \right)^2} = \dfrac{{15}}{8} \\
\Rightarrow \left( {\dfrac{{64}}{{9{k^2}}}} \right) = \dfrac{{15}}{{16}} \\
\Rightarrow {k^2} = \dfrac{{64 \times 16}}{{15 \times 9}} \\
\Rightarrow k = \sqrt {\dfrac{{64 \times 16}}{{15 \times 9}}} \\
\Rightarrow k = \dfrac{{8 \times 4}}{{3 \times \sqrt {15} }} \\
\Rightarrow k = \dfrac{{32}}{{3\sqrt {15} }} \;
\]
Hence, the value of k is \[\dfrac{{32}}{{3\sqrt {15} }}\].
So, the correct answer is “ \[\dfrac{{32}}{{3\sqrt {15} }}\]”.
Note: The relation between the zeros and the coefficients of a quadratic equation are:
Sum of zeros $ \alpha + \beta = \dfrac{{ - b}}{a} $
Product of zeros $ \alpha \beta = \dfrac{c}{a} $
Note that the equation has a number of zeros equal to the power of the highest degree term in the equation.
$ \Rightarrow \alpha + \beta + \gamma = \dfrac{{ - b}}{a} $
$ \Rightarrow \alpha \beta \gamma = \dfrac{{ - d}}{a} $
$ \Rightarrow \alpha \beta + \beta \gamma + \alpha \gamma = \dfrac{c}{a} $
Complete step-by-step answer:
In this question, we are given a cubic polynomial and we are given that its zeros are $ \alpha - \beta $ , $ \alpha $ and $ \alpha + \beta $ and we are supposed to find the value of k.
Given polynomial: $ k{x^3} - 8{x^2} = 5 $
$ \Rightarrow k{x^3} - 8{x^2} - 5 = 0 $
Here, $ a = k,b = - 8,c = 0,d = - 5 $
Now, this is a cubic polynomial and we need to find the coefficient of $ {x^3} $ .
For finding the value of k, we are going to use the relations between the zeros of the polynomial and the coefficients of the polynomial.
Sum of zeros
First relation is that the sum of the zeros of a cubic polynomial is $ \dfrac{{ - b}}{a} $ .
$ \Rightarrow \alpha + \beta + \gamma = \dfrac{{ - b}}{a} $
$
\Rightarrow \alpha + \beta + \alpha + \alpha - \beta = \dfrac{{ - b}}{a} \\
\Rightarrow 3\alpha = \dfrac{{ - \left( { - 8} \right)}}{k} \;
$
$ \Rightarrow 3\alpha = \dfrac{8}{k} $
$ \Rightarrow k = \dfrac{8}{{3\alpha }} $ - - - - - - - - - - (1)
Product of zeros
Second relation is that the product of the zeros of a cubic polynomial is $ \dfrac{{ - d}}{a} $ .
$ \Rightarrow \alpha \beta \gamma = \dfrac{{ - d}}{a} $
$ \Rightarrow \left( {\alpha - \beta } \right)\left( {\alpha + \beta } \right)\left( \alpha \right) = \dfrac{{ - \left( { - 5} \right)}}{k} $
Now, we know that $ \left( {a - b} \right)\left( {a + b} \right) = {a^2} - {b^2} $ . Therefore,
$ \Rightarrow \left( {{\alpha ^2} - {\beta ^2}} \right)\left( \alpha \right) = \dfrac{5}{k} $
Now, from equation (1), substitute the value of k.
$ \Rightarrow \left( {{\alpha ^2} - {\beta ^2}} \right)\left( \alpha \right) = \dfrac{5}{{\dfrac{8}{{3\alpha }}}} = \dfrac{{5 \times 3\alpha }}{8} $
$ \Rightarrow \left( {{\alpha ^2} - {\beta ^2}} \right) = \dfrac{{15}}{8} $
$ \Rightarrow \left( {{\alpha ^2} - {\beta ^2}} \right) = \dfrac{{15}}{8} $
\[ \Rightarrow {\beta ^2} = {\alpha ^2} + \dfrac{{15}}{8}\] - - - - - - (2)
Sum of product of roots
Third relation is that the sum of product of zeros of a cubic polynomial is $ \dfrac{c}{a} $ .
$ \Rightarrow \alpha \beta + \beta \gamma + \alpha \gamma = \dfrac{c}{a} $
$ \Rightarrow \alpha \left( {\alpha - \beta } \right) + \left( {\alpha - \beta } \right)\left( {\alpha + \beta } \right) + \left( {\alpha + \beta } \right)\alpha = \dfrac{0}{k} $
Opening the brackets, we get
$
\Rightarrow \alpha \left( {\alpha - \beta } \right) + \left( {\alpha - \beta } \right)\left( {\alpha + \beta } \right) + \left( {\alpha + \beta } \right)\alpha = \dfrac{0}{k} \\
\Rightarrow {\alpha ^2} - \alpha \beta + {\alpha ^2} - {\beta ^2} + {\alpha ^2} + \alpha \beta = 0 \\
\Rightarrow 3{\alpha ^2} - {\beta ^2} = 0 \\
$
Now, from equation (2), we get
$
\Rightarrow 3{\alpha ^2} - \left( {{\alpha ^2} + \dfrac{{15}}{8}} \right) = 0 \\
\Rightarrow 3{\alpha ^2} - {\alpha ^2} - \dfrac{{15}}{8} = 0 \;
$
$ \Rightarrow 2{\alpha ^2} = \dfrac{{15}}{8} $
Now, from equation (1), $ \alpha = \dfrac{8}{{3k}} $
Therefore,
\[
\Rightarrow 2{\left( {\dfrac{8}{{3k}}} \right)^2} = \dfrac{{15}}{8} \\
\Rightarrow \left( {\dfrac{{64}}{{9{k^2}}}} \right) = \dfrac{{15}}{{16}} \\
\Rightarrow {k^2} = \dfrac{{64 \times 16}}{{15 \times 9}} \\
\Rightarrow k = \sqrt {\dfrac{{64 \times 16}}{{15 \times 9}}} \\
\Rightarrow k = \dfrac{{8 \times 4}}{{3 \times \sqrt {15} }} \\
\Rightarrow k = \dfrac{{32}}{{3\sqrt {15} }} \;
\]
Hence, the value of k is \[\dfrac{{32}}{{3\sqrt {15} }}\].
So, the correct answer is “ \[\dfrac{{32}}{{3\sqrt {15} }}\]”.
Note: The relation between the zeros and the coefficients of a quadratic equation are:
Sum of zeros $ \alpha + \beta = \dfrac{{ - b}}{a} $
Product of zeros $ \alpha \beta = \dfrac{c}{a} $
Note that the equation has a number of zeros equal to the power of the highest degree term in the equation.
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Trending doubts
Difference Between Plant Cell and Animal Cell

Name 10 Living and Non living things class 9 biology CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

In which of the following the direction of ocean currents class 9 social science CBSE

On an outline map of India show its neighbouring c class 9 social science CBSE

Give four examples of a humanmade environment class 9 social science CBSE
