Courses
Courses for Kids
Free study material
Offline Centres
More
Store

# If the work done by $x - 1$ men in $x + 1$ days is to the work done by $x + 2$ men in $x - 1$ days in the ratio of 9:10. Find $x$.

Last updated date: 23rd May 2024
Total views: 440.4k
Views today: 10.40k
Verified
440.4k+ views

Hint: Convert the given ratio to a linear equation and then solve it.

We have to find the value of $x$. The ratio of the work done by different numbers of men in different numbers of days is given.

Let the work done by $x - 1$ men in $x + 1$ days be p.

$\Rightarrow p = (x - 1)(x + 1)$

Let the work done by $x + 2$ men in $x - 1$ days be q.

$\Rightarrow q = (x + 2)(x - 1)$

According to the ratio given in question,

$\Rightarrow \dfrac{p}{q} = \dfrac{9}{{10}} \to (1)$

So, now putting the expressions of p and q in equation (1), we get,

$\Rightarrow \dfrac{{\left( {x - 1} \right)\left( {x + 1} \right)}}{{\left( {x + 2} \right)\left( {x - 1} \right)}} = \dfrac{9}{{10}} \to (2) \\$

Here $x \ne 1$ because that would give us an indeterminate form.

In real life, that would mean either the work has to be executed by 0 men or in 0 days, both of which are impossible.

Now, equation (2) becomes,

$\Rightarrow \dfrac{{\left( {x + 1} \right)}}{{\left( {x + 2} \right)}} = \dfrac{9}{{10}}$

Cross - multiplying, we get,

$\Rightarrow 10x + 10 = 9x + 18$

Solving the above equation, we get,

$\Rightarrow x = 8$

Note: To solve such problems one must have a knowledge of the ratios and solving linear equations in one variable and also one must make sure he doesn’t end up getting an undefined or indeterminate form while solving the equations.