Answer
Verified
409.2k+ views
Hint: Here we are given with the volume of the cylinder directly. Also we are given the ratio of radius to height of the cylinder. We will rearrange this ratio and we will convert radius in the form of height. And then putting these values in formula we will find the height of the cylinder.
Formula used:
Volume of cylinder = \[\pi {r^2}h\]
Step by step solution:
Given that r:h=2:3
\[ \Rightarrow r = \dfrac{2}{3}h\]
And volume of cylinder is \[12436c{m^3}\]
Thus using the formula now,
Volume of cylinder = \[\pi {r^2}h\]
\[ \Rightarrow 12436 = \dfrac{{22}}{7} \times {\left( {\dfrac{2}{3}h} \right)^2} \times h\]
Taking the square,
\[ \Rightarrow 12436 = \dfrac{{22}}{7} \times \dfrac{4}{9}{h^2} \times h\]
Rearranging the terms and in order to find the height,
\[ \Rightarrow {h^3} = 12436 \times \dfrac{9}{4} \times \dfrac{7}{{22}}\]
On multiplying the terms we get,
\[ \Rightarrow {h^3} = \dfrac{{12436 \times 63}}{{88}}\]
\[ \Rightarrow {h^3} = \dfrac{{783468}}{{88}}\]
On dividing the ratio,
\[ \Rightarrow {h^3} = 8903.045\]
Taking the cube root on both sides,
\[ \Rightarrow h = \sqrt[3]{{8903.045}}\]
\[ \Rightarrow h = 20.72\]
But on observing the options we will round off the answer to
\[ \Rightarrow h \approx 21cm\]
This is the height of the cylinder \[ \Rightarrow h \approx 21cm\]
Thus option A is the correct answer.
Note:
Note that we converted radius in the form of height because we have to find the height in the question. If we were asked to find the radius then we would have reversed the arrangement. Also the calculation method or pattern may differ but the answer should be the same.
Formula used:
Volume of cylinder = \[\pi {r^2}h\]
Step by step solution:
Given that r:h=2:3
\[ \Rightarrow r = \dfrac{2}{3}h\]
And volume of cylinder is \[12436c{m^3}\]
Thus using the formula now,
Volume of cylinder = \[\pi {r^2}h\]
\[ \Rightarrow 12436 = \dfrac{{22}}{7} \times {\left( {\dfrac{2}{3}h} \right)^2} \times h\]
Taking the square,
\[ \Rightarrow 12436 = \dfrac{{22}}{7} \times \dfrac{4}{9}{h^2} \times h\]
Rearranging the terms and in order to find the height,
\[ \Rightarrow {h^3} = 12436 \times \dfrac{9}{4} \times \dfrac{7}{{22}}\]
On multiplying the terms we get,
\[ \Rightarrow {h^3} = \dfrac{{12436 \times 63}}{{88}}\]
\[ \Rightarrow {h^3} = \dfrac{{783468}}{{88}}\]
On dividing the ratio,
\[ \Rightarrow {h^3} = 8903.045\]
Taking the cube root on both sides,
\[ \Rightarrow h = \sqrt[3]{{8903.045}}\]
\[ \Rightarrow h = 20.72\]
But on observing the options we will round off the answer to
\[ \Rightarrow h \approx 21cm\]
This is the height of the cylinder \[ \Rightarrow h \approx 21cm\]
Thus option A is the correct answer.
Note:
Note that we converted radius in the form of height because we have to find the height in the question. If we were asked to find the radius then we would have reversed the arrangement. Also the calculation method or pattern may differ but the answer should be the same.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Difference Between Plant Cell and Animal Cell
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
How do you graph the function fx 4x class 9 maths CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths