
If the vectors $\overrightarrow a = i - j + 2k,{\text{ }}\overrightarrow b = 2i + 4j + k,{\text{ }}\overrightarrow c = \lambda i + j + \mu k$ are mutually orthogonal, then $\left( {\lambda ,\mu } \right) = $
A) $\left( {2, - 3} \right)$
B) $\left( { - 2,3} \right)$
C) $\left( {3, - 2} \right)$
D) $\left( { - 3,2} \right)$
Answer
591k+ views
Hint: As we are given $\overrightarrow a ,{\text{ }}\overrightarrow b ,{\text{ }}\overrightarrow c $ are mutually perpendicular, so , if the two vectors are perpendicular, then, $\overrightarrow c .\overrightarrow b = 0{\text{ and }}\overrightarrow a. \overrightarrow c = 0$. Both dot products will be zero.
Complete step-by-step answer:
Three vectors are given, $\overrightarrow a ,{\text{ }}\overrightarrow b ,{\text{ }}\overrightarrow c $ and it is said that all three are mutually perpendicular. That means the vectors are perpendicular to each other, that is, $\overrightarrow a \bot \overrightarrow b ,{\text{ }}\overrightarrow b \bot \overrightarrow c ,{\text{ }}\overrightarrow a \bot \overrightarrow c $. $ \bot $ is the sign of perpendicular.
Now we are provided that
$
\overrightarrow a = i - j + 2k \\
{\text{ }}\overrightarrow b = 2i + 4j + k \\
\overrightarrow c = \lambda i + j + \mu k \\
$
As they are mutually perpendicular, so their dot product is zero.
So, $\overrightarrow c .\overrightarrow b = 0{\text{ and }}\overrightarrow a .\overrightarrow c = 0$.
Now first let's do $\overrightarrow b .\overrightarrow c = 0$
$
\left( {2i + 4j + k} \right).\left( {\lambda i + j + \mu k} \right) = 0 \\
2\lambda + 4 + \mu = 0 \\
$
$2\lambda + \mu = - 4$ (1)
Now upon solving $\overrightarrow a .\overrightarrow c = 0$
$
\left( {i - j + 2k} \right).\left( {\lambda i + j + \mu k} \right) = 0 \\
\lambda - 1 + 2\mu = 0 \\
$
$\lambda + 2\mu = 1$ (2)
Now from equation (1), we get
$\mu = - 2\lambda - 4$
Putting this value in equation (2)
$
\lambda + 2\left( { - 2\lambda - 4} \right) = 1 \\
\lambda - 4\lambda - 8 = 1 \\
- 3\lambda = 9 \\
\lambda = - 3 \\
{\text{And}} \\
\mu = - 2\lambda - 4 \\
= - 2 \times \left( { - 3} \right) - 4 \\
\mu = 2 \\
$
So we get $\left( {\lambda ,\mu } \right) = \left( { - 3,2} \right)$
Hence option D is correct.
Note: We know when $\overrightarrow a {\text{ and }}\overrightarrow b $ are perpendicular, then $\overrightarrow a. \overrightarrow b = 0$. Or when $\overrightarrow a {\text{ and }}\overrightarrow b $ are parallel, then $\overrightarrow a \times \overrightarrow b = 0$. As we know, $\overrightarrow a .\overrightarrow b = ab\cos \theta $ and if they are perpendicular, then the angle between them or $\theta = {90^ \circ }$. So, $ab\cos {90^ \circ } = 0$. Similarly, we know that $\overrightarrow a \times \overrightarrow b = ab\sin \theta $. It is zero when the angle between them is $0$. So they are parallel.
Complete step-by-step answer:
Three vectors are given, $\overrightarrow a ,{\text{ }}\overrightarrow b ,{\text{ }}\overrightarrow c $ and it is said that all three are mutually perpendicular. That means the vectors are perpendicular to each other, that is, $\overrightarrow a \bot \overrightarrow b ,{\text{ }}\overrightarrow b \bot \overrightarrow c ,{\text{ }}\overrightarrow a \bot \overrightarrow c $. $ \bot $ is the sign of perpendicular.
Now we are provided that
$
\overrightarrow a = i - j + 2k \\
{\text{ }}\overrightarrow b = 2i + 4j + k \\
\overrightarrow c = \lambda i + j + \mu k \\
$
As they are mutually perpendicular, so their dot product is zero.
So, $\overrightarrow c .\overrightarrow b = 0{\text{ and }}\overrightarrow a .\overrightarrow c = 0$.
Now first let's do $\overrightarrow b .\overrightarrow c = 0$
$
\left( {2i + 4j + k} \right).\left( {\lambda i + j + \mu k} \right) = 0 \\
2\lambda + 4 + \mu = 0 \\
$
$2\lambda + \mu = - 4$ (1)
Now upon solving $\overrightarrow a .\overrightarrow c = 0$
$
\left( {i - j + 2k} \right).\left( {\lambda i + j + \mu k} \right) = 0 \\
\lambda - 1 + 2\mu = 0 \\
$
$\lambda + 2\mu = 1$ (2)
Now from equation (1), we get
$\mu = - 2\lambda - 4$
Putting this value in equation (2)
$
\lambda + 2\left( { - 2\lambda - 4} \right) = 1 \\
\lambda - 4\lambda - 8 = 1 \\
- 3\lambda = 9 \\
\lambda = - 3 \\
{\text{And}} \\
\mu = - 2\lambda - 4 \\
= - 2 \times \left( { - 3} \right) - 4 \\
\mu = 2 \\
$
So we get $\left( {\lambda ,\mu } \right) = \left( { - 3,2} \right)$
Hence option D is correct.
Note: We know when $\overrightarrow a {\text{ and }}\overrightarrow b $ are perpendicular, then $\overrightarrow a. \overrightarrow b = 0$. Or when $\overrightarrow a {\text{ and }}\overrightarrow b $ are parallel, then $\overrightarrow a \times \overrightarrow b = 0$. As we know, $\overrightarrow a .\overrightarrow b = ab\cos \theta $ and if they are perpendicular, then the angle between them or $\theta = {90^ \circ }$. So, $ab\cos {90^ \circ } = 0$. Similarly, we know that $\overrightarrow a \times \overrightarrow b = ab\sin \theta $. It is zero when the angle between them is $0$. So they are parallel.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

