
If the vectors $\overrightarrow a = i - j + 2k,{\text{ }}\overrightarrow b = 2i + 4j + k,{\text{ }}\overrightarrow c = \lambda i + j + \mu k$ are mutually orthogonal, then $\left( {\lambda ,\mu } \right) = $
A) $\left( {2, - 3} \right)$
B) $\left( { - 2,3} \right)$
C) $\left( {3, - 2} \right)$
D) $\left( { - 3,2} \right)$
Answer
511.2k+ views
Hint: As we are given $\overrightarrow a ,{\text{ }}\overrightarrow b ,{\text{ }}\overrightarrow c $ are mutually perpendicular, so , if the two vectors are perpendicular, then, $\overrightarrow c .\overrightarrow b = 0{\text{ and }}\overrightarrow a. \overrightarrow c = 0$. Both dot products will be zero.
Complete step-by-step answer:
Three vectors are given, $\overrightarrow a ,{\text{ }}\overrightarrow b ,{\text{ }}\overrightarrow c $ and it is said that all three are mutually perpendicular. That means the vectors are perpendicular to each other, that is, $\overrightarrow a \bot \overrightarrow b ,{\text{ }}\overrightarrow b \bot \overrightarrow c ,{\text{ }}\overrightarrow a \bot \overrightarrow c $. $ \bot $ is the sign of perpendicular.
Now we are provided that
$
\overrightarrow a = i - j + 2k \\
{\text{ }}\overrightarrow b = 2i + 4j + k \\
\overrightarrow c = \lambda i + j + \mu k \\
$
As they are mutually perpendicular, so their dot product is zero.
So, $\overrightarrow c .\overrightarrow b = 0{\text{ and }}\overrightarrow a .\overrightarrow c = 0$.
Now first let's do $\overrightarrow b .\overrightarrow c = 0$
$
\left( {2i + 4j + k} \right).\left( {\lambda i + j + \mu k} \right) = 0 \\
2\lambda + 4 + \mu = 0 \\
$
$2\lambda + \mu = - 4$ (1)
Now upon solving $\overrightarrow a .\overrightarrow c = 0$
$
\left( {i - j + 2k} \right).\left( {\lambda i + j + \mu k} \right) = 0 \\
\lambda - 1 + 2\mu = 0 \\
$
$\lambda + 2\mu = 1$ (2)
Now from equation (1), we get
$\mu = - 2\lambda - 4$
Putting this value in equation (2)
$
\lambda + 2\left( { - 2\lambda - 4} \right) = 1 \\
\lambda - 4\lambda - 8 = 1 \\
- 3\lambda = 9 \\
\lambda = - 3 \\
{\text{And}} \\
\mu = - 2\lambda - 4 \\
= - 2 \times \left( { - 3} \right) - 4 \\
\mu = 2 \\
$
So we get $\left( {\lambda ,\mu } \right) = \left( { - 3,2} \right)$
Hence option D is correct.
Note: We know when $\overrightarrow a {\text{ and }}\overrightarrow b $ are perpendicular, then $\overrightarrow a. \overrightarrow b = 0$. Or when $\overrightarrow a {\text{ and }}\overrightarrow b $ are parallel, then $\overrightarrow a \times \overrightarrow b = 0$. As we know, $\overrightarrow a .\overrightarrow b = ab\cos \theta $ and if they are perpendicular, then the angle between them or $\theta = {90^ \circ }$. So, $ab\cos {90^ \circ } = 0$. Similarly, we know that $\overrightarrow a \times \overrightarrow b = ab\sin \theta $. It is zero when the angle between them is $0$. So they are parallel.
Complete step-by-step answer:
Three vectors are given, $\overrightarrow a ,{\text{ }}\overrightarrow b ,{\text{ }}\overrightarrow c $ and it is said that all three are mutually perpendicular. That means the vectors are perpendicular to each other, that is, $\overrightarrow a \bot \overrightarrow b ,{\text{ }}\overrightarrow b \bot \overrightarrow c ,{\text{ }}\overrightarrow a \bot \overrightarrow c $. $ \bot $ is the sign of perpendicular.
Now we are provided that
$
\overrightarrow a = i - j + 2k \\
{\text{ }}\overrightarrow b = 2i + 4j + k \\
\overrightarrow c = \lambda i + j + \mu k \\
$
As they are mutually perpendicular, so their dot product is zero.
So, $\overrightarrow c .\overrightarrow b = 0{\text{ and }}\overrightarrow a .\overrightarrow c = 0$.
Now first let's do $\overrightarrow b .\overrightarrow c = 0$
$
\left( {2i + 4j + k} \right).\left( {\lambda i + j + \mu k} \right) = 0 \\
2\lambda + 4 + \mu = 0 \\
$
$2\lambda + \mu = - 4$ (1)
Now upon solving $\overrightarrow a .\overrightarrow c = 0$
$
\left( {i - j + 2k} \right).\left( {\lambda i + j + \mu k} \right) = 0 \\
\lambda - 1 + 2\mu = 0 \\
$
$\lambda + 2\mu = 1$ (2)
Now from equation (1), we get
$\mu = - 2\lambda - 4$
Putting this value in equation (2)
$
\lambda + 2\left( { - 2\lambda - 4} \right) = 1 \\
\lambda - 4\lambda - 8 = 1 \\
- 3\lambda = 9 \\
\lambda = - 3 \\
{\text{And}} \\
\mu = - 2\lambda - 4 \\
= - 2 \times \left( { - 3} \right) - 4 \\
\mu = 2 \\
$
So we get $\left( {\lambda ,\mu } \right) = \left( { - 3,2} \right)$
Hence option D is correct.
Note: We know when $\overrightarrow a {\text{ and }}\overrightarrow b $ are perpendicular, then $\overrightarrow a. \overrightarrow b = 0$. Or when $\overrightarrow a {\text{ and }}\overrightarrow b $ are parallel, then $\overrightarrow a \times \overrightarrow b = 0$. As we know, $\overrightarrow a .\overrightarrow b = ab\cos \theta $ and if they are perpendicular, then the angle between them or $\theta = {90^ \circ }$. So, $ab\cos {90^ \circ } = 0$. Similarly, we know that $\overrightarrow a \times \overrightarrow b = ab\sin \theta $. It is zero when the angle between them is $0$. So they are parallel.
Recently Updated Pages
Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Trending doubts
Explain why it is said like that Mock drill is use class 11 social science CBSE

Which of the following blood vessels in the circulatory class 11 biology CBSE

1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Which of the following is nitrogenfixing algae a Nostoc class 11 biology CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells
