
If the vectors $\overrightarrow a = i - j + 2k,{\text{ }}\overrightarrow b = 2i + 4j + k,{\text{ }}\overrightarrow c = \lambda i + j + \mu k$ are mutually orthogonal, then $\left( {\lambda ,\mu } \right) = $
A) $\left( {2, - 3} \right)$
B) $\left( { - 2,3} \right)$
C) $\left( {3, - 2} \right)$
D) $\left( { - 3,2} \right)$
Answer
576.9k+ views
Hint: As we are given $\overrightarrow a ,{\text{ }}\overrightarrow b ,{\text{ }}\overrightarrow c $ are mutually perpendicular, so , if the two vectors are perpendicular, then, $\overrightarrow c .\overrightarrow b = 0{\text{ and }}\overrightarrow a. \overrightarrow c = 0$. Both dot products will be zero.
Complete step-by-step answer:
Three vectors are given, $\overrightarrow a ,{\text{ }}\overrightarrow b ,{\text{ }}\overrightarrow c $ and it is said that all three are mutually perpendicular. That means the vectors are perpendicular to each other, that is, $\overrightarrow a \bot \overrightarrow b ,{\text{ }}\overrightarrow b \bot \overrightarrow c ,{\text{ }}\overrightarrow a \bot \overrightarrow c $. $ \bot $ is the sign of perpendicular.
Now we are provided that
$
\overrightarrow a = i - j + 2k \\
{\text{ }}\overrightarrow b = 2i + 4j + k \\
\overrightarrow c = \lambda i + j + \mu k \\
$
As they are mutually perpendicular, so their dot product is zero.
So, $\overrightarrow c .\overrightarrow b = 0{\text{ and }}\overrightarrow a .\overrightarrow c = 0$.
Now first let's do $\overrightarrow b .\overrightarrow c = 0$
$
\left( {2i + 4j + k} \right).\left( {\lambda i + j + \mu k} \right) = 0 \\
2\lambda + 4 + \mu = 0 \\
$
$2\lambda + \mu = - 4$ (1)
Now upon solving $\overrightarrow a .\overrightarrow c = 0$
$
\left( {i - j + 2k} \right).\left( {\lambda i + j + \mu k} \right) = 0 \\
\lambda - 1 + 2\mu = 0 \\
$
$\lambda + 2\mu = 1$ (2)
Now from equation (1), we get
$\mu = - 2\lambda - 4$
Putting this value in equation (2)
$
\lambda + 2\left( { - 2\lambda - 4} \right) = 1 \\
\lambda - 4\lambda - 8 = 1 \\
- 3\lambda = 9 \\
\lambda = - 3 \\
{\text{And}} \\
\mu = - 2\lambda - 4 \\
= - 2 \times \left( { - 3} \right) - 4 \\
\mu = 2 \\
$
So we get $\left( {\lambda ,\mu } \right) = \left( { - 3,2} \right)$
Hence option D is correct.
Note: We know when $\overrightarrow a {\text{ and }}\overrightarrow b $ are perpendicular, then $\overrightarrow a. \overrightarrow b = 0$. Or when $\overrightarrow a {\text{ and }}\overrightarrow b $ are parallel, then $\overrightarrow a \times \overrightarrow b = 0$. As we know, $\overrightarrow a .\overrightarrow b = ab\cos \theta $ and if they are perpendicular, then the angle between them or $\theta = {90^ \circ }$. So, $ab\cos {90^ \circ } = 0$. Similarly, we know that $\overrightarrow a \times \overrightarrow b = ab\sin \theta $. It is zero when the angle between them is $0$. So they are parallel.
Complete step-by-step answer:
Three vectors are given, $\overrightarrow a ,{\text{ }}\overrightarrow b ,{\text{ }}\overrightarrow c $ and it is said that all three are mutually perpendicular. That means the vectors are perpendicular to each other, that is, $\overrightarrow a \bot \overrightarrow b ,{\text{ }}\overrightarrow b \bot \overrightarrow c ,{\text{ }}\overrightarrow a \bot \overrightarrow c $. $ \bot $ is the sign of perpendicular.
Now we are provided that
$
\overrightarrow a = i - j + 2k \\
{\text{ }}\overrightarrow b = 2i + 4j + k \\
\overrightarrow c = \lambda i + j + \mu k \\
$
As they are mutually perpendicular, so their dot product is zero.
So, $\overrightarrow c .\overrightarrow b = 0{\text{ and }}\overrightarrow a .\overrightarrow c = 0$.
Now first let's do $\overrightarrow b .\overrightarrow c = 0$
$
\left( {2i + 4j + k} \right).\left( {\lambda i + j + \mu k} \right) = 0 \\
2\lambda + 4 + \mu = 0 \\
$
$2\lambda + \mu = - 4$ (1)
Now upon solving $\overrightarrow a .\overrightarrow c = 0$
$
\left( {i - j + 2k} \right).\left( {\lambda i + j + \mu k} \right) = 0 \\
\lambda - 1 + 2\mu = 0 \\
$
$\lambda + 2\mu = 1$ (2)
Now from equation (1), we get
$\mu = - 2\lambda - 4$
Putting this value in equation (2)
$
\lambda + 2\left( { - 2\lambda - 4} \right) = 1 \\
\lambda - 4\lambda - 8 = 1 \\
- 3\lambda = 9 \\
\lambda = - 3 \\
{\text{And}} \\
\mu = - 2\lambda - 4 \\
= - 2 \times \left( { - 3} \right) - 4 \\
\mu = 2 \\
$
So we get $\left( {\lambda ,\mu } \right) = \left( { - 3,2} \right)$
Hence option D is correct.
Note: We know when $\overrightarrow a {\text{ and }}\overrightarrow b $ are perpendicular, then $\overrightarrow a. \overrightarrow b = 0$. Or when $\overrightarrow a {\text{ and }}\overrightarrow b $ are parallel, then $\overrightarrow a \times \overrightarrow b = 0$. As we know, $\overrightarrow a .\overrightarrow b = ab\cos \theta $ and if they are perpendicular, then the angle between them or $\theta = {90^ \circ }$. So, $ab\cos {90^ \circ } = 0$. Similarly, we know that $\overrightarrow a \times \overrightarrow b = ab\sin \theta $. It is zero when the angle between them is $0$. So they are parallel.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

