
If the vector $\overrightarrow{b}=3\hat{j}+4\hat{k}$ is written as the sum of a vector $\overrightarrow{{{b}_{1}}}$ , parallel to $\overrightarrow{a}=\hat{i}+\hat{j}$ and a vector $\overrightarrow{{{b}_{2}}}$ ,perpendicular to $\vec{a}$ ,then ${{\vec{b}}_{1}}\times {{\vec{b}}_{2}}$ is equal to.
(A) $3\hat{i}-3\hat{j}+9\hat{k}$
(B) $-6\hat{i}+6\hat{j}-\dfrac{9}{2}\hat{k}$
(C) $6\hat{i}-6\hat{j}+\dfrac{9}{2}\hat{k}$
(D) $-3\hat{i}+3\hat{j}-9\hat{k}$
Answer
543k+ views
Hint: In this question we have been asked to find the value of ${{\vec{b}}_{1}}\times {{\vec{b}}_{2}}$, when the given information is stated as “the vector $\overrightarrow{b}=3\hat{j}+4\hat{k}$ is written as the sum of a vector $\overrightarrow{{{b}_{1}}}$ , parallel to $\overrightarrow{a}=\hat{i}+\hat{j}$ and a vector $\overrightarrow{{{b}_{2}}}$ ,perpendicular to $\vec{a}$”. We know that the dot product of two perpendicular vectors is zero and the cross product of two vectors $A={{A}_{1}}\hat{i}+{{A}_{2}}\hat{j}+{{A}_{3}}\hat{k}$ and $B={{B}_{1}}\hat{i}+{{B}_{2}}\hat{j}+{{B}_{3}}\hat{k}$ is given as $A\times B=\left| \begin{matrix}
{\hat{i}} & {\hat{j}} & {\hat{k}} \\
{{A}_{1}} & {{A}_{2}} & {{A}_{3}} \\
{{B}_{1}} & {{B}_{2}} & {{B}_{3}} \\
\end{matrix} \right|$ .
Complete step by step solution:
Now considering from the question we have been asked to find the value of ${{\vec{b}}_{1}}\times {{\vec{b}}_{2}}$, when the given information is stated as “the vector $\overrightarrow{b}=3\hat{j}+4\hat{k}$ is written as the sum of a vector $\overrightarrow{{{b}_{1}}}$ , parallel to $\overrightarrow{a}=\hat{i}+\hat{j}$ and a vector $\overrightarrow{{{b}_{2}}}$, perpendicular to $\vec{a}$”.
Now we can say that $\vec{b}={{\vec{b}}_{1}}+{{\vec{b}}_{2}}\Rightarrow 3\hat{j}+4\hat{k}$.
As the vector $\overrightarrow{{{b}_{1}}}$ is parallel to $\overrightarrow{a}=\hat{i}+\hat{j}$ , we can assume that $ \overrightarrow{{{b}_{1}}}=p\left( \hat{i}+\hat{j} \right)$.
As the vector $\overrightarrow{{{b}_{2}}}$ is perpendicular to $\overrightarrow{a}=\hat{i}+\hat{j}$ , we can assume that $ \overrightarrow{{{b}_{2}}}=s\hat{i}+r\hat{j}+q\hat{k}$.
Now we can say that the dot product of $\vec{a}$ and ${{\vec{b}}_{2}}$ will be zero as they are perpendicular to each other. Hence
$\begin{align}
& \overrightarrow{a}.\overrightarrow{{{b}_{2}}}\Rightarrow \left( \hat{i}+\hat{j} \right).\left( s\hat{i}+r\hat{j}+q\hat{k} \right)=0 \\
& \Rightarrow s+r=0 \\
\end{align}$
We can conclude that
$\begin{align}
& \vec{b}={{{\vec{b}}}_{1}}+{{{\vec{b}}}_{2}}\Rightarrow 3\hat{j}+4\hat{k} \\
& \Rightarrow 3\hat{j}+4\hat{k}=p\left( \hat{i}+\hat{j} \right)+\left( s\hat{i}+r\hat{j}+q\hat{k} \right) \\
& \Rightarrow s+p=0 \\
& r+p=3 \\
& q=4 \\
\end{align}$
Hence we have $s=-r$ so we can say that
$\begin{align}
& s+p=0 \\
& \Rightarrow -r+p=0 \\
\end{align}$
From $r+p=3$ and $p-r=0$ we will have $p=r=\dfrac{3}{2}$ and $s=\dfrac{-3}{2}$ .
Hence we can say that
$\begin{align}
& {{{\vec{b}}}_{1}}=\dfrac{3}{2}\left( \hat{i}+\hat{j} \right) \\
& {{{\vec{b}}}_{2}}=\left( \dfrac{-3}{2}\hat{i}+\dfrac{3}{2}\hat{j}+4\hat{k} \right) \\
\end{align}$ .
From the basic concept we know that the cross product of two vectors $A={{A}_{1}}\hat{i}+{{A}_{2}}\hat{j}+{{A}_{3}}\hat{k}$ and $B={{B}_{1}}\hat{i}+{{B}_{2}}\hat{j}+{{B}_{3}}\hat{k}$ is given as $A\times B=\left| \begin{matrix}
{\hat{i}} & {\hat{j}} & {\hat{k}} \\
{{A}_{1}} & {{A}_{2}} & {{A}_{3}} \\
{{B}_{1}} & {{B}_{2}} & {{B}_{3}} \\
\end{matrix} \right|$ .
Hence
$\begin{align}
& {{{\vec{b}}}_{1}}\times {{{\vec{b}}}_{2}}=\left| \begin{matrix}
{\hat{i}} & {\hat{j}} & {\hat{k}} \\
\dfrac{3}{2} & \dfrac{3}{2} & 0 \\
\dfrac{-3}{2} & \dfrac{3}{2} & 4 \\
\end{matrix} \right| \\
& \Rightarrow {{{\vec{b}}}_{1}}\times {{{\vec{b}}}_{2}}=\hat{i}\left| \begin{matrix}
\dfrac{3}{2} & 0 \\
\dfrac{3}{2} & 4 \\
\end{matrix} \right|-\hat{j}\left| \begin{matrix}
\dfrac{3}{2} & 0 \\
\dfrac{-3}{2} & 4 \\
\end{matrix} \right|+\hat{k}\left| \begin{matrix}
\dfrac{3}{2} & \dfrac{3}{2} \\
\dfrac{-3}{2} & \dfrac{3}{2} \\
\end{matrix} \right| \\
& \Rightarrow {{{\vec{b}}}_{1}}\times {{{\vec{b}}}_{2}}=\left( \dfrac{3}{2}\times 4-0 \right)\hat{i}-\left( \dfrac{3}{2}\times 4-0 \right)\hat{j}+\left( \dfrac{3}{2}\times \dfrac{3}{2}-\dfrac{3}{2}\times \dfrac{-3}{2} \right)\hat{k} \\
& \Rightarrow {{{\vec{b}}}_{1}}\times {{{\vec{b}}}_{2}}=6\hat{i}-6\hat{j}+\dfrac{9}{2}\hat{k} \\
\end{align}$
Therefore we can conclude that ${{\vec{b}}_{1}}\times {{\vec{b}}_{2}}=6\hat{i}-6\hat{j}+\dfrac{9}{2}\hat{k}$ .
So, the correct answer is “Option C”.
Note: While answering questions of this type we should be sure with our concept. Someone may confuse and assume that the cross product of two perpendicular vectors is zero and end up having the answer zero which is clearly a wrong answer.
{\hat{i}} & {\hat{j}} & {\hat{k}} \\
{{A}_{1}} & {{A}_{2}} & {{A}_{3}} \\
{{B}_{1}} & {{B}_{2}} & {{B}_{3}} \\
\end{matrix} \right|$ .
Complete step by step solution:
Now considering from the question we have been asked to find the value of ${{\vec{b}}_{1}}\times {{\vec{b}}_{2}}$, when the given information is stated as “the vector $\overrightarrow{b}=3\hat{j}+4\hat{k}$ is written as the sum of a vector $\overrightarrow{{{b}_{1}}}$ , parallel to $\overrightarrow{a}=\hat{i}+\hat{j}$ and a vector $\overrightarrow{{{b}_{2}}}$, perpendicular to $\vec{a}$”.
Now we can say that $\vec{b}={{\vec{b}}_{1}}+{{\vec{b}}_{2}}\Rightarrow 3\hat{j}+4\hat{k}$.
As the vector $\overrightarrow{{{b}_{1}}}$ is parallel to $\overrightarrow{a}=\hat{i}+\hat{j}$ , we can assume that $ \overrightarrow{{{b}_{1}}}=p\left( \hat{i}+\hat{j} \right)$.
As the vector $\overrightarrow{{{b}_{2}}}$ is perpendicular to $\overrightarrow{a}=\hat{i}+\hat{j}$ , we can assume that $ \overrightarrow{{{b}_{2}}}=s\hat{i}+r\hat{j}+q\hat{k}$.
Now we can say that the dot product of $\vec{a}$ and ${{\vec{b}}_{2}}$ will be zero as they are perpendicular to each other. Hence
$\begin{align}
& \overrightarrow{a}.\overrightarrow{{{b}_{2}}}\Rightarrow \left( \hat{i}+\hat{j} \right).\left( s\hat{i}+r\hat{j}+q\hat{k} \right)=0 \\
& \Rightarrow s+r=0 \\
\end{align}$
We can conclude that
$\begin{align}
& \vec{b}={{{\vec{b}}}_{1}}+{{{\vec{b}}}_{2}}\Rightarrow 3\hat{j}+4\hat{k} \\
& \Rightarrow 3\hat{j}+4\hat{k}=p\left( \hat{i}+\hat{j} \right)+\left( s\hat{i}+r\hat{j}+q\hat{k} \right) \\
& \Rightarrow s+p=0 \\
& r+p=3 \\
& q=4 \\
\end{align}$
Hence we have $s=-r$ so we can say that
$\begin{align}
& s+p=0 \\
& \Rightarrow -r+p=0 \\
\end{align}$
From $r+p=3$ and $p-r=0$ we will have $p=r=\dfrac{3}{2}$ and $s=\dfrac{-3}{2}$ .
Hence we can say that
$\begin{align}
& {{{\vec{b}}}_{1}}=\dfrac{3}{2}\left( \hat{i}+\hat{j} \right) \\
& {{{\vec{b}}}_{2}}=\left( \dfrac{-3}{2}\hat{i}+\dfrac{3}{2}\hat{j}+4\hat{k} \right) \\
\end{align}$ .
From the basic concept we know that the cross product of two vectors $A={{A}_{1}}\hat{i}+{{A}_{2}}\hat{j}+{{A}_{3}}\hat{k}$ and $B={{B}_{1}}\hat{i}+{{B}_{2}}\hat{j}+{{B}_{3}}\hat{k}$ is given as $A\times B=\left| \begin{matrix}
{\hat{i}} & {\hat{j}} & {\hat{k}} \\
{{A}_{1}} & {{A}_{2}} & {{A}_{3}} \\
{{B}_{1}} & {{B}_{2}} & {{B}_{3}} \\
\end{matrix} \right|$ .
Hence
$\begin{align}
& {{{\vec{b}}}_{1}}\times {{{\vec{b}}}_{2}}=\left| \begin{matrix}
{\hat{i}} & {\hat{j}} & {\hat{k}} \\
\dfrac{3}{2} & \dfrac{3}{2} & 0 \\
\dfrac{-3}{2} & \dfrac{3}{2} & 4 \\
\end{matrix} \right| \\
& \Rightarrow {{{\vec{b}}}_{1}}\times {{{\vec{b}}}_{2}}=\hat{i}\left| \begin{matrix}
\dfrac{3}{2} & 0 \\
\dfrac{3}{2} & 4 \\
\end{matrix} \right|-\hat{j}\left| \begin{matrix}
\dfrac{3}{2} & 0 \\
\dfrac{-3}{2} & 4 \\
\end{matrix} \right|+\hat{k}\left| \begin{matrix}
\dfrac{3}{2} & \dfrac{3}{2} \\
\dfrac{-3}{2} & \dfrac{3}{2} \\
\end{matrix} \right| \\
& \Rightarrow {{{\vec{b}}}_{1}}\times {{{\vec{b}}}_{2}}=\left( \dfrac{3}{2}\times 4-0 \right)\hat{i}-\left( \dfrac{3}{2}\times 4-0 \right)\hat{j}+\left( \dfrac{3}{2}\times \dfrac{3}{2}-\dfrac{3}{2}\times \dfrac{-3}{2} \right)\hat{k} \\
& \Rightarrow {{{\vec{b}}}_{1}}\times {{{\vec{b}}}_{2}}=6\hat{i}-6\hat{j}+\dfrac{9}{2}\hat{k} \\
\end{align}$
Therefore we can conclude that ${{\vec{b}}_{1}}\times {{\vec{b}}_{2}}=6\hat{i}-6\hat{j}+\dfrac{9}{2}\hat{k}$ .
So, the correct answer is “Option C”.
Note: While answering questions of this type we should be sure with our concept. Someone may confuse and assume that the cross product of two perpendicular vectors is zero and end up having the answer zero which is clearly a wrong answer.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

Give 10 examples of unisexual and bisexual flowers

