
If the value of \[y={{\sin }^{-1}}\left( x.\sqrt{1-x}+\sqrt{x}\sqrt{1-{{x}^{2}}} \right)\], then the value of \[\dfrac{dy}{dx}\] is
(a) \[\dfrac{-2x}{\sqrt{1-{{x}^{2}}}}+\dfrac{1}{2\sqrt{x-{{x}^{2}}}}\]
(b) \[\dfrac{-1}{\sqrt{1-{{x}^{2}}}}-\dfrac{1}{2\sqrt{x-{{x}^{2}}}}\]
(c) \[\dfrac{1}{\sqrt{1-{{x}^{2}}}}+\dfrac{1}{2\sqrt{x-{{x}^{2}}}}\]
(d) None of these
Answer
592.5k+ views
Hint: To solve this question we will use various trigonometric identities. Some of them are as follows- \[\sin A.\cos B+\cos A.\sin B=\sin \left( A+B \right)\].
\[{{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1\] and \[\dfrac{d}{dx}{{\sin }^{-1}}x=\dfrac{1}{\sqrt{1-{{x}^{2}}}}\]. First we will make proper substitution then we will use above identities to get the result.
Complete step-by-step answer:
Given that, \[y={{\sin }^{-1}}\left( x.\sqrt{1-x}+\sqrt{x}\sqrt{1-{{x}^{2}}} \right)\].
First of all we will simplify the given terms for that we will make certain assumptions.
Let \[x=\sin A\] and \[\sqrt{x}=\sin B\].
Now as, \[x=\sin A\].
And we have a trigonometric formula which is given as, \[{{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1\].
\[\Rightarrow {{\sin }^{2}}\theta =1-{{\cos }^{2}}\theta \]
Taking square root both sides we get,
\[\sin \theta =\sqrt{1-\cos \theta }\] - (1)
Now we have, \[x=\sin A\]
Using equation (1), we get
\[\sqrt{1-{{x}^{2}}}=\cos A\]
This is so as, \[x=\sin A\]
Squaring both sides \[\Rightarrow {{x}^{2}}={{\sin }^{2}}A\].
\[\Rightarrow 1-{{x}^{2}}=1-{{\sin }^{2}}A\]
And taking under root we have,
\[\Rightarrow \sqrt{1-{{x}^{2}}}=\sqrt{1-{{\sin }^{2}}A}\]
\[\Rightarrow \sqrt{1-{{x}^{2}}}=\cos A\] - (2)
Similarly we have, \[\sqrt{x}=\sin B\].
Again using equation (i) we have,
\[\sqrt{{{\left( 1-\sqrt{x} \right)}^{2}}}=\cos B\]
\[\Rightarrow \sqrt{1-x}=\cos B\] - (3)
Finally we will use obtained values in the value of y.
Substituting the value of equation (2) and (3) in value of y we get;
\[y={{\sin }^{-1}}\left( \sin A\cos B+\cos A\sin B \right)\]
Now we will use trigonometric identity given as,
\[\sin \left( A+B \right)=\sin A\cos B+\cos A\sin B\]
Using this identity in value of y we get;
\[\begin{align}
& y={{\sin }^{-1}}\left( \sin \left( A+B \right) \right) \\
& \Rightarrow y=\left( A+B \right) \\
\end{align}\]
Now we had, \[x=\sin A\].
Taking \[{{\sin }^{-1}}\] both sides we have, \[{{\sin }^{-1}}x=A\].
And we had \[\sqrt{x}=\sin B\].
Again taking \[{{\sin }^{-1}}\] both sides we have, \[{{\sin }^{-1}}\sqrt{x}=B\].
Substituting the value of A & B in y we get,
\[y={{\sin }^{-1}}x+{{\sin }^{-1}}\sqrt{x}\]
Now finally we will differentiate the obtained values. For that we will the formula of differentiation of \[{{\sin }^{-1}}x\] which is \[\dfrac{d}{dx}{{\sin }^{-1}}x=\dfrac{1}{\sqrt{1-{{x}^{2}}}}\].
Using this formula and differentiating y with respect to x we get,
\[\dfrac{d}{dx}=\dfrac{d}{dx}\left( {{\sin }^{-1}}x+{{\sin }^{-1}}\sqrt{x} \right)\]
Using, \[\dfrac{d}{dx}{{\sin }^{-1}}x=\dfrac{1}{\sqrt{1-{{x}^{2}}}}\] we get,
Applying chain rule of differentiation we get,
\[\dfrac{dy}{dx}=\dfrac{1}{\sqrt{1-{{x}^{2}}}}+\dfrac{1}{\sqrt{1-{{\left( \sqrt{x} \right)}^{2}}}}.\dfrac{1}{2\sqrt{x}}\]
\[\Rightarrow \dfrac{dy}{dx}=\dfrac{1}{\sqrt{1-{{x}^{2}}}}+\dfrac{1}{2\sqrt{x}\sqrt{1-\left( x \right)}}\]
Multiplying \[\sqrt{x}\] inside we get,
\[\Rightarrow \dfrac{dy}{dx}=\dfrac{1}{\sqrt{1-{{x}^{2}}}}+\dfrac{1}{2\sqrt{x-{{x}^{2}}}}\]
Hence the value of \[\dfrac{dy}{dx}\] is \[\dfrac{1}{\sqrt{1-{{x}^{2}}}}+\dfrac{1}{2\sqrt{x-{{x}^{2}}}}\],
So, the correct answer is “Option C”.
Note: Students can get confused at the point where we have to differentiate \[{{\sin }^{-1}}\sqrt{x}\]. Always remember that we apply chain rule of differentiate in such cases,
The derivative is done as follows –
\[\begin{align}
& \dfrac{d}{dx}\left( {{\sin }^{-1}}\sqrt{x} \right)=\dfrac{d}{dx}\left( {{\sin }^{-1}}\sqrt{x} \right)=\dfrac{1}{\sqrt{1-{{\left( \sqrt{x} \right)}^{2}}}}\dfrac{d}{dx}\sqrt{x} \\
& \Rightarrow \dfrac{d}{dx}\left( {{\sin }^{-1}}\sqrt{x} \right)=\dfrac{1}{\sqrt{1-x}}\dfrac{1}{2\sqrt{x}} \\
\end{align}\]
\[{{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1\] and \[\dfrac{d}{dx}{{\sin }^{-1}}x=\dfrac{1}{\sqrt{1-{{x}^{2}}}}\]. First we will make proper substitution then we will use above identities to get the result.
Complete step-by-step answer:
Given that, \[y={{\sin }^{-1}}\left( x.\sqrt{1-x}+\sqrt{x}\sqrt{1-{{x}^{2}}} \right)\].
First of all we will simplify the given terms for that we will make certain assumptions.
Let \[x=\sin A\] and \[\sqrt{x}=\sin B\].
Now as, \[x=\sin A\].
And we have a trigonometric formula which is given as, \[{{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1\].
\[\Rightarrow {{\sin }^{2}}\theta =1-{{\cos }^{2}}\theta \]
Taking square root both sides we get,
\[\sin \theta =\sqrt{1-\cos \theta }\] - (1)
Now we have, \[x=\sin A\]
Using equation (1), we get
\[\sqrt{1-{{x}^{2}}}=\cos A\]
This is so as, \[x=\sin A\]
Squaring both sides \[\Rightarrow {{x}^{2}}={{\sin }^{2}}A\].
\[\Rightarrow 1-{{x}^{2}}=1-{{\sin }^{2}}A\]
And taking under root we have,
\[\Rightarrow \sqrt{1-{{x}^{2}}}=\sqrt{1-{{\sin }^{2}}A}\]
\[\Rightarrow \sqrt{1-{{x}^{2}}}=\cos A\] - (2)
Similarly we have, \[\sqrt{x}=\sin B\].
Again using equation (i) we have,
\[\sqrt{{{\left( 1-\sqrt{x} \right)}^{2}}}=\cos B\]
\[\Rightarrow \sqrt{1-x}=\cos B\] - (3)
Finally we will use obtained values in the value of y.
Substituting the value of equation (2) and (3) in value of y we get;
\[y={{\sin }^{-1}}\left( \sin A\cos B+\cos A\sin B \right)\]
Now we will use trigonometric identity given as,
\[\sin \left( A+B \right)=\sin A\cos B+\cos A\sin B\]
Using this identity in value of y we get;
\[\begin{align}
& y={{\sin }^{-1}}\left( \sin \left( A+B \right) \right) \\
& \Rightarrow y=\left( A+B \right) \\
\end{align}\]
Now we had, \[x=\sin A\].
Taking \[{{\sin }^{-1}}\] both sides we have, \[{{\sin }^{-1}}x=A\].
And we had \[\sqrt{x}=\sin B\].
Again taking \[{{\sin }^{-1}}\] both sides we have, \[{{\sin }^{-1}}\sqrt{x}=B\].
Substituting the value of A & B in y we get,
\[y={{\sin }^{-1}}x+{{\sin }^{-1}}\sqrt{x}\]
Now finally we will differentiate the obtained values. For that we will the formula of differentiation of \[{{\sin }^{-1}}x\] which is \[\dfrac{d}{dx}{{\sin }^{-1}}x=\dfrac{1}{\sqrt{1-{{x}^{2}}}}\].
Using this formula and differentiating y with respect to x we get,
\[\dfrac{d}{dx}=\dfrac{d}{dx}\left( {{\sin }^{-1}}x+{{\sin }^{-1}}\sqrt{x} \right)\]
Using, \[\dfrac{d}{dx}{{\sin }^{-1}}x=\dfrac{1}{\sqrt{1-{{x}^{2}}}}\] we get,
Applying chain rule of differentiation we get,
\[\dfrac{dy}{dx}=\dfrac{1}{\sqrt{1-{{x}^{2}}}}+\dfrac{1}{\sqrt{1-{{\left( \sqrt{x} \right)}^{2}}}}.\dfrac{1}{2\sqrt{x}}\]
\[\Rightarrow \dfrac{dy}{dx}=\dfrac{1}{\sqrt{1-{{x}^{2}}}}+\dfrac{1}{2\sqrt{x}\sqrt{1-\left( x \right)}}\]
Multiplying \[\sqrt{x}\] inside we get,
\[\Rightarrow \dfrac{dy}{dx}=\dfrac{1}{\sqrt{1-{{x}^{2}}}}+\dfrac{1}{2\sqrt{x-{{x}^{2}}}}\]
Hence the value of \[\dfrac{dy}{dx}\] is \[\dfrac{1}{\sqrt{1-{{x}^{2}}}}+\dfrac{1}{2\sqrt{x-{{x}^{2}}}}\],
So, the correct answer is “Option C”.
Note: Students can get confused at the point where we have to differentiate \[{{\sin }^{-1}}\sqrt{x}\]. Always remember that we apply chain rule of differentiate in such cases,
The derivative is done as follows –
\[\begin{align}
& \dfrac{d}{dx}\left( {{\sin }^{-1}}\sqrt{x} \right)=\dfrac{d}{dx}\left( {{\sin }^{-1}}\sqrt{x} \right)=\dfrac{1}{\sqrt{1-{{\left( \sqrt{x} \right)}^{2}}}}\dfrac{d}{dx}\sqrt{x} \\
& \Rightarrow \dfrac{d}{dx}\left( {{\sin }^{-1}}\sqrt{x} \right)=\dfrac{1}{\sqrt{1-x}}\dfrac{1}{2\sqrt{x}} \\
\end{align}\]
Recently Updated Pages
Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

RNA and DNA are chiral molecules their chirality is class 12 chemistry CBSE

RNA and DNA are chiral molecules their chirality is class 12 chemistry CBSE

