
If the value of \[\tan \alpha =\dfrac{5}{12}\] , find all other trigonometric ratios.
Answer
513.3k+ views
Hint: In this question, we are given the value of \[\tan \alpha \] and we are asked to find all other trigonometric ratios. We have to find all the trigonometric ratios, step by step. We know the identity, \[{{\sec }^{2}}\alpha -{{\tan }^{2}}\alpha =1\] . Using this relation, \[\sec \alpha \] can be obtained. And using the value of \[\sec \alpha \] , \[\cos \alpha \] can be calculated. We also know the identity, \[{{\sin }^{2}}\alpha +{{\cos }^{2}}\alpha =1\]. Using this identity, \[\sin \alpha \] can be calculated. Now, we have the value of \[\sin \alpha \] and \[\cos \alpha \] . Using the value of \[\sin \alpha \] and \[\cos \alpha \] , \[\tan \alpha \] can be calculated. Now, other remaining trigonometric ratios can be calculated by finding the reciprocal of these trigonometric ratios.
Complete step-by-step answer:
Now, according to the question, it is given that \[\tan \alpha =\dfrac{5}{12}\]………………….(1)
We know that, \[{{\sec }^{2}}\alpha -{{\tan }^{2}}\alpha =1\] ……………………(2)
Taking \[{{\tan }^{2}}\alpha \] to the RHS in the equation (2), we get
\[{{\sec }^{2}}\alpha =1+{{\tan }^{2}}\alpha \]…………….(3)
Now, \[\sec \alpha \] can be easily expressed in terms of \[\tan \alpha \] .
Taking square root in both LHS and RHS in equation (3), we get
\[\sec \alpha =\sqrt{1+{{\tan }^{2}}\alpha }\]……………….(4)
In question, we are given the value of \[\tan \alpha \] . Putting the value of \[\tan \alpha \]
from equation (1) in equation (4), we get
\[\begin{align}
& \sec \alpha =\sqrt{1+{{\left( \dfrac{5}{12} \right)}^{2}}} \\
& \Rightarrow \sec \alpha =\sqrt{1+\dfrac{25}{144}} \\
& \Rightarrow \sec \alpha =\sqrt{\dfrac{144+25}{144}} \\
& \Rightarrow \sec \alpha =\sqrt{\dfrac{169}{144}} \\
& \Rightarrow \sec \alpha =\dfrac{13}{12} \\
\end{align}\]
Now, we have
\[sec\alpha =\dfrac{13}{12}\]……………….(5)
From equation (1) and equation (5), we have got the values of \[\sec \alpha \] and \[\tan \alpha \] .
Using equation (5), we can find the value of \[\cos \alpha \] .
We know that,
\[\dfrac{1}{sec\alpha }=\cos \alpha\]…………………….(6)
Putting the values of \[\sec \alpha \] in equation (6), we get
\[\begin{align}
& \cos \alpha =\dfrac{1}{\sec \alpha } \\
& \Rightarrow \cos \alpha =\dfrac{1}{\dfrac{13}{12}} \\
& \Rightarrow \cos \alpha =\dfrac{12}{13} \\
\end{align}\]
Now, we also have
\[\cos \alpha =\dfrac{12}{13}\]………………..(7)
We have to find other remaining trigonometric ratios that are \[\sin \alpha \], \[\cos ec\alpha \] , and \[\cot \alpha \] .
We know the identity,
\[{{\sin }^{2}}\alpha +{{\cos }^{2}}\alpha =1\]……………………(8)
Taking \[{{\sin }^{2}}\alpha \] to the RHS in the equation (8), we get
\[{{\sin }^{2}}\alpha =1-{{\cos }^{2}}\alpha \]…………….(9)
Now, \[\sin \alpha \] can be easily expressed in terms of \[\cos \alpha \] .
Taking square root in both LHS and RHS in equation (9), we get
\[sin\alpha =\sqrt{1-{{\cos }^{2}}\alpha }\]……………(10)
In equation(7), we have got the value of \[\cos \alpha \]. Putting the value of \[\cos \alpha \]
from equation (7) in equation (10), we get
\[\begin{align}
& sin\alpha =\sqrt{1-co{{s}^{2}}\alpha } \\
& \Rightarrow sin\alpha =\sqrt{1-{{\left( \dfrac{12}{13} \right)}^{2}}} \\
& \Rightarrow sin\alpha =\sqrt{1-\dfrac{144}{169}} \\
& \Rightarrow sin\alpha =\sqrt{\dfrac{169-144}{169}} \\
& \Rightarrow sin\alpha =\sqrt{\dfrac{25}{169}} \\
& \Rightarrow sin\alpha =\dfrac{5}{13} \\
\end{align}\]
We know that \[\sec \alpha \] , \[\operatorname{cosec}\alpha \] , and \[\cot \alpha \] is reciprocal of \[\cos \alpha \], \[\sin \alpha \] and \[\tan \alpha \]respectively.
\[\begin{align}
& \sin \alpha =\dfrac{5}{13}, \\
& \cos ec\alpha =\dfrac{1}{\sin \alpha }=\dfrac{13}{5}. \\
\end{align}\]
\[\begin{align}
& \cos \alpha =\dfrac{12}{13}, \\
& sec\alpha =\dfrac{1}{cos\alpha }=\dfrac{13}{12}. \\
\end{align}\]
\[\begin{align}
& tan\alpha =\dfrac{5}{12}, \\
& \cot \alpha =\dfrac{1}{tan\alpha }=\dfrac{12}{5}. \\
\end{align}\]
Now, we have got all the trigonometric ratios.
Note: This question can also be solved by using the Pythagoras theorem.
We have, \[\tan \alpha =\dfrac{5}{12}\] .
Now, using a right-angled triangle, we can get the value of \[\cos \alpha \].
Using Pythagoras theorem, we can find the hypotenuse.
Hypotenuse = \[\sqrt{{{\left( base \right)}^{2}}+{{\left( height \right)}^{2}}}\]
\[\begin{align}
& \sqrt{{{\left( 12 \right)}^{2}}+{{(5)}^{2}}} \\
& =\sqrt{144+25} \\
& =\sqrt{169} \\
& =13 \\
\end{align}\]
\[\begin{align}
& \cos \alpha =\dfrac{base}{hypotenuse} \\
& \cos \alpha =\dfrac{12}{13} \\
\end{align}\]
We know that,
\[\sin \alpha =\dfrac{height}{hypotenuse}\]
\[\sin \alpha =\dfrac{5}{13}\]
Now, other remaining trigonometric ratios can be calculated by finding the reciprocal of these trigonometric ratios.
Complete step-by-step answer:
Now, according to the question, it is given that \[\tan \alpha =\dfrac{5}{12}\]………………….(1)
We know that, \[{{\sec }^{2}}\alpha -{{\tan }^{2}}\alpha =1\] ……………………(2)
Taking \[{{\tan }^{2}}\alpha \] to the RHS in the equation (2), we get
\[{{\sec }^{2}}\alpha =1+{{\tan }^{2}}\alpha \]…………….(3)
Now, \[\sec \alpha \] can be easily expressed in terms of \[\tan \alpha \] .
Taking square root in both LHS and RHS in equation (3), we get
\[\sec \alpha =\sqrt{1+{{\tan }^{2}}\alpha }\]……………….(4)
In question, we are given the value of \[\tan \alpha \] . Putting the value of \[\tan \alpha \]
from equation (1) in equation (4), we get
\[\begin{align}
& \sec \alpha =\sqrt{1+{{\left( \dfrac{5}{12} \right)}^{2}}} \\
& \Rightarrow \sec \alpha =\sqrt{1+\dfrac{25}{144}} \\
& \Rightarrow \sec \alpha =\sqrt{\dfrac{144+25}{144}} \\
& \Rightarrow \sec \alpha =\sqrt{\dfrac{169}{144}} \\
& \Rightarrow \sec \alpha =\dfrac{13}{12} \\
\end{align}\]
Now, we have
\[sec\alpha =\dfrac{13}{12}\]……………….(5)
From equation (1) and equation (5), we have got the values of \[\sec \alpha \] and \[\tan \alpha \] .
Using equation (5), we can find the value of \[\cos \alpha \] .
We know that,
\[\dfrac{1}{sec\alpha }=\cos \alpha\]…………………….(6)
Putting the values of \[\sec \alpha \] in equation (6), we get
\[\begin{align}
& \cos \alpha =\dfrac{1}{\sec \alpha } \\
& \Rightarrow \cos \alpha =\dfrac{1}{\dfrac{13}{12}} \\
& \Rightarrow \cos \alpha =\dfrac{12}{13} \\
\end{align}\]
Now, we also have
\[\cos \alpha =\dfrac{12}{13}\]………………..(7)
We have to find other remaining trigonometric ratios that are \[\sin \alpha \], \[\cos ec\alpha \] , and \[\cot \alpha \] .
We know the identity,
\[{{\sin }^{2}}\alpha +{{\cos }^{2}}\alpha =1\]……………………(8)
Taking \[{{\sin }^{2}}\alpha \] to the RHS in the equation (8), we get
\[{{\sin }^{2}}\alpha =1-{{\cos }^{2}}\alpha \]…………….(9)
Now, \[\sin \alpha \] can be easily expressed in terms of \[\cos \alpha \] .
Taking square root in both LHS and RHS in equation (9), we get
\[sin\alpha =\sqrt{1-{{\cos }^{2}}\alpha }\]……………(10)
In equation(7), we have got the value of \[\cos \alpha \]. Putting the value of \[\cos \alpha \]
from equation (7) in equation (10), we get
\[\begin{align}
& sin\alpha =\sqrt{1-co{{s}^{2}}\alpha } \\
& \Rightarrow sin\alpha =\sqrt{1-{{\left( \dfrac{12}{13} \right)}^{2}}} \\
& \Rightarrow sin\alpha =\sqrt{1-\dfrac{144}{169}} \\
& \Rightarrow sin\alpha =\sqrt{\dfrac{169-144}{169}} \\
& \Rightarrow sin\alpha =\sqrt{\dfrac{25}{169}} \\
& \Rightarrow sin\alpha =\dfrac{5}{13} \\
\end{align}\]
We know that \[\sec \alpha \] , \[\operatorname{cosec}\alpha \] , and \[\cot \alpha \] is reciprocal of \[\cos \alpha \], \[\sin \alpha \] and \[\tan \alpha \]respectively.
\[\begin{align}
& \sin \alpha =\dfrac{5}{13}, \\
& \cos ec\alpha =\dfrac{1}{\sin \alpha }=\dfrac{13}{5}. \\
\end{align}\]
\[\begin{align}
& \cos \alpha =\dfrac{12}{13}, \\
& sec\alpha =\dfrac{1}{cos\alpha }=\dfrac{13}{12}. \\
\end{align}\]
\[\begin{align}
& tan\alpha =\dfrac{5}{12}, \\
& \cot \alpha =\dfrac{1}{tan\alpha }=\dfrac{12}{5}. \\
\end{align}\]
Now, we have got all the trigonometric ratios.
Note: This question can also be solved by using the Pythagoras theorem.
We have, \[\tan \alpha =\dfrac{5}{12}\] .
Now, using a right-angled triangle, we can get the value of \[\cos \alpha \].

Using Pythagoras theorem, we can find the hypotenuse.
Hypotenuse = \[\sqrt{{{\left( base \right)}^{2}}+{{\left( height \right)}^{2}}}\]
\[\begin{align}
& \sqrt{{{\left( 12 \right)}^{2}}+{{(5)}^{2}}} \\
& =\sqrt{144+25} \\
& =\sqrt{169} \\
& =13 \\
\end{align}\]
\[\begin{align}
& \cos \alpha =\dfrac{base}{hypotenuse} \\
& \cos \alpha =\dfrac{12}{13} \\
\end{align}\]
We know that,
\[\sin \alpha =\dfrac{height}{hypotenuse}\]
\[\sin \alpha =\dfrac{5}{13}\]
Now, other remaining trigonometric ratios can be calculated by finding the reciprocal of these trigonometric ratios.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Trending doubts
Distinguish between the reserved forests and protected class 10 biology CBSE

A boat goes 24 km upstream and 28 km downstream in class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

What are the public facilities provided by the government? Also explain each facility

Difference between mass and weight class 10 physics CBSE

Statistics in singular sense includes A Collection class 10 maths CBSE
