
If the value of \[{{\tan }^{2}}\theta +{{\cot }^{2}}\theta =2\] then the value of \[\theta \] is
Answer
561.3k+ views
Hint: First of all, assume that \[\tan \theta =x\] . Use the relation \[\tan \theta =\dfrac{1}{\cot \theta }\] and get the value of
\[{{\cot }^{2}}\theta \] in terms of \[x\] . Now, replace \[\tan \theta \] and \[\cot \theta \] in terms of \[x\] in the equation \[{{\tan }^{2}}\theta +{{\cot }^{2}}\theta =2\] . Simplify it by using the formula \[{{\left( a-b \right)}^{2}}={{a}^{2}}+{{b}^{2}}-2\times a\times b\] and get the value of \[x\] . Now, use \[\tan \left( \dfrac{\pi }{4} \right)=1\] , \[\tan \left( \dfrac{5\pi }{4} \right)=1\] , \[\tan \left( \dfrac{-\pi }{4} \right)=-1\] , and \[\tan \left( \dfrac{3\pi }{4} \right)=-1\] . Then, find the general solution of \[\theta \] for \[\tan \theta =\pm 1\].
Complete step-by-step solution:
According to the question, we are given that,
\[{{\tan }^{2}}\theta +{{\cot }^{2}}\theta =2\] ……………………………………………(1)
First of all, let us assume that \[\tan \theta =x\] …………………………………….(2)
We know the relation between \[\tan \theta \] and \[\cot \theta \] , \[\tan \theta =\dfrac{1}{\cot \theta }\] ………………………….(3)
On squaring the LHS and RHS of equation (3), we get
\[\Rightarrow {{\left( \tan \theta \right)}^{2}}={{\left( \dfrac{1}{\cot \theta } \right)}^{2}}\]
\[\Rightarrow {{\tan }^{2}}\theta =\dfrac{1}{{{\cot }^{2}}\theta }\] …………………………………………….(4)
Now, using equation (2) and on substituting \[{{\tan }^{2}}\theta \] by \[x\] in equation (4), we get
\[\Rightarrow {{x}^{2}}=\dfrac{1}{{{\cot }^{2}}\theta }\]
\[\Rightarrow {{\cot }^{2}}\theta =\dfrac{1}{{{x}^{2}}}\] ……………………………………..(5)
From equation (1), equation (2), and equation (5), we get
\[\begin{align}
& \Rightarrow {{x}^{2}}+\dfrac{1}{{{x}^{2}}}=2 \\
& \Rightarrow {{x}^{2}}+\dfrac{1}{{{x}^{2}}}-2=0 \\
\end{align}\]
\[\Rightarrow {{\left( x \right)}^{2}}+\dfrac{1}{{{\left( x \right)}^{2}}}-2\times x\times \dfrac{1}{x}=0\] …………………………………………(6)
We know the formula, \[{{\left( a-b \right)}^{2}}={{a}^{2}}+{{b}^{2}}-2\times a\times b\] …………………………………………(7)
In equation (7), on replacing \[a\] by \[x\] and \[b\] by \[\dfrac{1}{x}\] , we get
\[{{\left( x-\dfrac{1}{x} \right)}^{2}}={{x}^{2}}+\dfrac{1}{{{x}^{2}}}-2\times x\times \dfrac{1}{x}\] ……………………………………………..(8)
On comparing equation (6) and equation (8), we get
\[\Rightarrow {{\left( x-\dfrac{1}{x} \right)}^{2}}=0\] ………………………………………(9)
Now, applying square root in both LHS and RHs of equation (9), we get
\[\begin{align}
& \Rightarrow \sqrt{{{\left( x-\dfrac{1}{x} \right)}^{2}}}=\sqrt{0} \\
& \Rightarrow \left( x-\dfrac{1}{x} \right)=0 \\
& \Rightarrow x=\dfrac{1}{x} \\
& \Rightarrow {{x}^{2}}=1 \\
& \Rightarrow x=\sqrt{1} \\
& \Rightarrow x=\pm 1 \\
\end{align}\]
So, \[x=1\] or \[x=-1\] …………………………………..(10)
From equation (2) and equation (10), we can say that
\[\tan \theta =1\] ………………………………………(11)
\[\tan \theta =-1\] …………………………………………(12)
We know that \[\tan \left( \dfrac{\pi }{4} \right)=1\] …………………………………(13)
Now, from equation (11) and equation (13), we get
\[\begin{align}
& \Rightarrow \tan \theta =\tan \left( \dfrac{\pi }{4} \right) \\
& \Rightarrow \theta ={{\tan }^{-1}}\left\{ \tan \left( \dfrac{\pi }{4} \right) \right\} \\
\end{align}\]
\[\Rightarrow \theta =\dfrac{\pi }{4}\] ……………………………………(14)
We also know that \[\tan \left( \dfrac{5\pi }{4} \right)=1\] ………………………………………(15)
From equation (11) and equation (15), we get
\[\begin{align}
& \Rightarrow \tan \theta =\tan \left( \dfrac{5\pi }{4} \right) \\
& \Rightarrow \theta ={{\tan }^{-1}}\left\{ \tan \left( \dfrac{5\pi }{4} \right) \right\} \\
& \Rightarrow \theta =\dfrac{5\pi }{4} \\
\end{align}\]
\[\Rightarrow \theta =\pi +\dfrac{\pi }{4}\] ……………………………………(16)
Now, from equation (14) and equation (16), we can say that the general solution of \[\tan \theta =1\] is \[\theta =n\pi +\dfrac{\pi }{4}\] ………………………………………(17)
We also know that \[\tan \left( \dfrac{-\pi }{4} \right)=-1\] …………………………………(18)
Now, from equation (12) and equation (18), we get
\[\begin{align}
& \Rightarrow \tan \theta =\tan \left( \dfrac{-\pi }{4} \right) \\
& \Rightarrow \theta ={{\tan }^{-1}}\left\{ \tan \left( \dfrac{-\pi }{4} \right) \right\} \\
\end{align}\]
\[\Rightarrow \theta =\dfrac{-\pi }{4}\] ……………………………………(19)
We also know that \[\tan \left( \dfrac{3\pi }{4} \right)=-1\] ………………………………………(20)
From equation (12) and equation (20), we get
\[\begin{align}
& \Rightarrow \tan \theta =\tan \left( \dfrac{3\pi }{4} \right) \\
& \Rightarrow \theta ={{\tan }^{-1}}\left\{ \tan \left( \dfrac{3\pi }{4} \right) \right\} \\
& \Rightarrow \theta =\dfrac{3\pi }{4} \\
\end{align}\]
\[\Rightarrow \theta =\pi -\dfrac{\pi }{4}\] ……………………………………(21)
Now, from equation (19) and equation (21), we can say that the general solution of \[\tan \theta =-1\] is \[\theta =n\pi -\dfrac{\pi }{4}\] ………………………………………(22)
On combining equation (17) and equation (22), we get
\[\theta =n\pi \pm \dfrac{\pi }{4}\] …………………………………………..(23)
Hence, the value of \[\theta \] is \[\left( n\pi \pm \dfrac{\pi }{4} \right)\].
Note: To solve this question easily and within the given time constraint one must remember that the general solution of \[\tan \theta =\pm 1\] is \[\left( n\pi \pm \dfrac{\pi }{4} \right)\] . If somehow one forgets this then, he must know the procedure to find out the general solution.
\[{{\cot }^{2}}\theta \] in terms of \[x\] . Now, replace \[\tan \theta \] and \[\cot \theta \] in terms of \[x\] in the equation \[{{\tan }^{2}}\theta +{{\cot }^{2}}\theta =2\] . Simplify it by using the formula \[{{\left( a-b \right)}^{2}}={{a}^{2}}+{{b}^{2}}-2\times a\times b\] and get the value of \[x\] . Now, use \[\tan \left( \dfrac{\pi }{4} \right)=1\] , \[\tan \left( \dfrac{5\pi }{4} \right)=1\] , \[\tan \left( \dfrac{-\pi }{4} \right)=-1\] , and \[\tan \left( \dfrac{3\pi }{4} \right)=-1\] . Then, find the general solution of \[\theta \] for \[\tan \theta =\pm 1\].
Complete step-by-step solution:
According to the question, we are given that,
\[{{\tan }^{2}}\theta +{{\cot }^{2}}\theta =2\] ……………………………………………(1)
First of all, let us assume that \[\tan \theta =x\] …………………………………….(2)
We know the relation between \[\tan \theta \] and \[\cot \theta \] , \[\tan \theta =\dfrac{1}{\cot \theta }\] ………………………….(3)
On squaring the LHS and RHS of equation (3), we get
\[\Rightarrow {{\left( \tan \theta \right)}^{2}}={{\left( \dfrac{1}{\cot \theta } \right)}^{2}}\]
\[\Rightarrow {{\tan }^{2}}\theta =\dfrac{1}{{{\cot }^{2}}\theta }\] …………………………………………….(4)
Now, using equation (2) and on substituting \[{{\tan }^{2}}\theta \] by \[x\] in equation (4), we get
\[\Rightarrow {{x}^{2}}=\dfrac{1}{{{\cot }^{2}}\theta }\]
\[\Rightarrow {{\cot }^{2}}\theta =\dfrac{1}{{{x}^{2}}}\] ……………………………………..(5)
From equation (1), equation (2), and equation (5), we get
\[\begin{align}
& \Rightarrow {{x}^{2}}+\dfrac{1}{{{x}^{2}}}=2 \\
& \Rightarrow {{x}^{2}}+\dfrac{1}{{{x}^{2}}}-2=0 \\
\end{align}\]
\[\Rightarrow {{\left( x \right)}^{2}}+\dfrac{1}{{{\left( x \right)}^{2}}}-2\times x\times \dfrac{1}{x}=0\] …………………………………………(6)
We know the formula, \[{{\left( a-b \right)}^{2}}={{a}^{2}}+{{b}^{2}}-2\times a\times b\] …………………………………………(7)
In equation (7), on replacing \[a\] by \[x\] and \[b\] by \[\dfrac{1}{x}\] , we get
\[{{\left( x-\dfrac{1}{x} \right)}^{2}}={{x}^{2}}+\dfrac{1}{{{x}^{2}}}-2\times x\times \dfrac{1}{x}\] ……………………………………………..(8)
On comparing equation (6) and equation (8), we get
\[\Rightarrow {{\left( x-\dfrac{1}{x} \right)}^{2}}=0\] ………………………………………(9)
Now, applying square root in both LHS and RHs of equation (9), we get
\[\begin{align}
& \Rightarrow \sqrt{{{\left( x-\dfrac{1}{x} \right)}^{2}}}=\sqrt{0} \\
& \Rightarrow \left( x-\dfrac{1}{x} \right)=0 \\
& \Rightarrow x=\dfrac{1}{x} \\
& \Rightarrow {{x}^{2}}=1 \\
& \Rightarrow x=\sqrt{1} \\
& \Rightarrow x=\pm 1 \\
\end{align}\]
So, \[x=1\] or \[x=-1\] …………………………………..(10)
From equation (2) and equation (10), we can say that
\[\tan \theta =1\] ………………………………………(11)
\[\tan \theta =-1\] …………………………………………(12)
We know that \[\tan \left( \dfrac{\pi }{4} \right)=1\] …………………………………(13)
Now, from equation (11) and equation (13), we get
\[\begin{align}
& \Rightarrow \tan \theta =\tan \left( \dfrac{\pi }{4} \right) \\
& \Rightarrow \theta ={{\tan }^{-1}}\left\{ \tan \left( \dfrac{\pi }{4} \right) \right\} \\
\end{align}\]
\[\Rightarrow \theta =\dfrac{\pi }{4}\] ……………………………………(14)
We also know that \[\tan \left( \dfrac{5\pi }{4} \right)=1\] ………………………………………(15)
From equation (11) and equation (15), we get
\[\begin{align}
& \Rightarrow \tan \theta =\tan \left( \dfrac{5\pi }{4} \right) \\
& \Rightarrow \theta ={{\tan }^{-1}}\left\{ \tan \left( \dfrac{5\pi }{4} \right) \right\} \\
& \Rightarrow \theta =\dfrac{5\pi }{4} \\
\end{align}\]
\[\Rightarrow \theta =\pi +\dfrac{\pi }{4}\] ……………………………………(16)
Now, from equation (14) and equation (16), we can say that the general solution of \[\tan \theta =1\] is \[\theta =n\pi +\dfrac{\pi }{4}\] ………………………………………(17)
We also know that \[\tan \left( \dfrac{-\pi }{4} \right)=-1\] …………………………………(18)
Now, from equation (12) and equation (18), we get
\[\begin{align}
& \Rightarrow \tan \theta =\tan \left( \dfrac{-\pi }{4} \right) \\
& \Rightarrow \theta ={{\tan }^{-1}}\left\{ \tan \left( \dfrac{-\pi }{4} \right) \right\} \\
\end{align}\]
\[\Rightarrow \theta =\dfrac{-\pi }{4}\] ……………………………………(19)
We also know that \[\tan \left( \dfrac{3\pi }{4} \right)=-1\] ………………………………………(20)
From equation (12) and equation (20), we get
\[\begin{align}
& \Rightarrow \tan \theta =\tan \left( \dfrac{3\pi }{4} \right) \\
& \Rightarrow \theta ={{\tan }^{-1}}\left\{ \tan \left( \dfrac{3\pi }{4} \right) \right\} \\
& \Rightarrow \theta =\dfrac{3\pi }{4} \\
\end{align}\]
\[\Rightarrow \theta =\pi -\dfrac{\pi }{4}\] ……………………………………(21)
Now, from equation (19) and equation (21), we can say that the general solution of \[\tan \theta =-1\] is \[\theta =n\pi -\dfrac{\pi }{4}\] ………………………………………(22)
On combining equation (17) and equation (22), we get
\[\theta =n\pi \pm \dfrac{\pi }{4}\] …………………………………………..(23)
Hence, the value of \[\theta \] is \[\left( n\pi \pm \dfrac{\pi }{4} \right)\].
Note: To solve this question easily and within the given time constraint one must remember that the general solution of \[\tan \theta =\pm 1\] is \[\left( n\pi \pm \dfrac{\pi }{4} \right)\] . If somehow one forgets this then, he must know the procedure to find out the general solution.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

