
If the value of $\sin \alpha =\dfrac{3}{5}$ then find the value of
\[\begin{align}
& \left( i \right)\sin 3\alpha \\
& \left( ii \right)\cos 3\alpha \\
& \left( iii \right)\tan 3\alpha \\
\end{align}\]
Answer
584.1k+ views
Hint: We will solve $\left( i \right)\sin 3\alpha $ by using the formula $\sin 3\theta =3\sin \theta -4{{\sin }^{3}}\theta $ and putting $\theta =3\alpha $ and using $\sin \alpha =\dfrac{3}{5}\text{ and }{{\sin }^{3}}\alpha =\dfrac{27}{125}$, to compute $\cos 3\alpha =\cos \theta $ we will use $\cos \theta =\dfrac{\text{Base}}{\text{Hypotenuse}}$ and finally to compute ... to get result.
Complete step-by-step answer:
Let us solve this part (i),
We are given value of $\sin \alpha =\dfrac{3}{5}$
We have a trigonometric formula as $\sin 3\alpha =3\sin \alpha -4{{\sin }^{3}}\alpha $ as $\sin \alpha =\dfrac{3}{5}$ then cubing both sides we have:
\[\Rightarrow \sin 3\alpha ={{\left( \dfrac{3}{5} \right)}^{3}}=\dfrac{27}{125}\]
So, by applying above stated formula and substituting values, we get:
\[\begin{align}
& \Rightarrow \sin 3\alpha =3\sin \alpha -4{{\sin }^{3}}\alpha \\
& \Rightarrow \sin 3\alpha =3\left( \dfrac{3}{5} \right)-4\left( \dfrac{27}{125} \right) \\
& \Rightarrow \sin 3\alpha =\dfrac{9}{5}-\dfrac{108}{125} \\
& \Rightarrow \sin 3\alpha =\dfrac{25\times 9-108}{125} \\
& \Rightarrow \sin 3\alpha =\dfrac{117}{125} \\
\end{align}\]
Therefore, the value of \[\left( i \right)\sin 3\alpha =\dfrac{117}{125}\]
Consider part (ii) we have,
Let $3\alpha =\theta $ then $\sin \theta =\dfrac{117}{125}$ and we have to compute $\cos \theta $
Consider triangle ABC as below with $\angle C\text{ as }\theta $
Then, as \[\sin \theta =\dfrac{\text{Perpendicular}}{\text{Hypotenuse}}\text{ and }\sin \theta =\dfrac{117}{125}\]
Perpendicular AB = 117 and Hypotenuse AC = 125.
Now, we will compute side BC of triangle ABC by using Pythagoras theorem stated as below:
In a right angled triangle, the square of the hypotenuse side is equal to the sum of squares of other two sides.
In $\Delta ABC$
\[\begin{align}
& {{\left( AC \right)}^{2}}={{\left( AB \right)}^{2}}+{{\left( BC \right)}^{2}} \\
& {{\left( 125 \right)}^{2}}={{\left( 117 \right)}^{2}}+{{\left( BC \right)}^{2}} \\
& {{\left( BC \right)}^{2}}={{\left( 125 \right)}^{2}}+{{\left( 117 \right)}^{2}} \\
& B{{C}^{2}}=15625-13689 \\
& B{{C}^{2}}=1936 \\
& BC=44 \\
\end{align}\]
So length of side BC = 44.
Now, we know that, \[\cos \theta =\dfrac{\text{Base}}{\text{Hypotenuse}}\]
\[\begin{align}
& \cos \theta =\dfrac{\text{Base}\to \text{BC}}{\text{Hypotenuse}\to \text{AC}} \\
& \cos \theta =\dfrac{\text{44}}{\text{125}} \\
\end{align}\]
The value of \[\left( ii \right)\cos 3\alpha =\dfrac{44}{125}\]
Finally we compute $\tan \theta $ by using formula $\tan \theta =\dfrac{\sin \theta }{\cos \theta }$
\[\text{as }\theta =3\alpha \Rightarrow \tan 3\alpha =\dfrac{\sin 3\alpha }{\cos 3\alpha }\]
Substituting the values of \[\sin 3\alpha \text{ as }\dfrac{117}{125}\text{ and }\cos 3\alpha \text{ as }\dfrac{44}{125}\]
\[\begin{align}
& \tan 3\alpha =\dfrac{\dfrac{117}{125}}{\dfrac{44}{125}} \\
& \tan 3\alpha =\dfrac{117}{44} \\
\end{align}\]
The value of \[\left( iii \right)\tan 3\alpha =\dfrac{117}{44}\]
Hence, our answer is:
\[\begin{align}
& \left( i \right)\sin 3\alpha =\dfrac{117}{125} \\
& \left( ii \right)\cos 3\alpha =\dfrac{44}{125} \\
& \left( iii \right)\tan 3\alpha =\dfrac{117}{44} \\
\end{align}\]
Note: Another way to calculate value of $\cos 3\alpha $ from $\sin 3\alpha $ is by using the trigonometric formula $\sin \theta =\sqrt{1-{{\cos }^{2}}\theta }$
\[\begin{align}
& \sin 3\alpha =\dfrac{117}{125} \\
& \Rightarrow \sqrt{1-{{\cos }^{2}}3\alpha }=\dfrac{117}{125} \\
& \Rightarrow 1-{{\cos }^{2}}3\alpha ={{\left( \dfrac{117}{125} \right)}^{2}}=\dfrac{13689}{15625} \\
& \Rightarrow {{\cos }^{2}}3\alpha =1-\dfrac{13689}{15625}=\dfrac{15625-13689}{15625} \\
& \Rightarrow \cos 3\alpha =\dfrac{44}{125} \\
\end{align}\]
Which is the correct value.
Complete step-by-step answer:
Let us solve this part (i),
We are given value of $\sin \alpha =\dfrac{3}{5}$
We have a trigonometric formula as $\sin 3\alpha =3\sin \alpha -4{{\sin }^{3}}\alpha $ as $\sin \alpha =\dfrac{3}{5}$ then cubing both sides we have:
\[\Rightarrow \sin 3\alpha ={{\left( \dfrac{3}{5} \right)}^{3}}=\dfrac{27}{125}\]
So, by applying above stated formula and substituting values, we get:
\[\begin{align}
& \Rightarrow \sin 3\alpha =3\sin \alpha -4{{\sin }^{3}}\alpha \\
& \Rightarrow \sin 3\alpha =3\left( \dfrac{3}{5} \right)-4\left( \dfrac{27}{125} \right) \\
& \Rightarrow \sin 3\alpha =\dfrac{9}{5}-\dfrac{108}{125} \\
& \Rightarrow \sin 3\alpha =\dfrac{25\times 9-108}{125} \\
& \Rightarrow \sin 3\alpha =\dfrac{117}{125} \\
\end{align}\]
Therefore, the value of \[\left( i \right)\sin 3\alpha =\dfrac{117}{125}\]
Consider part (ii) we have,
Let $3\alpha =\theta $ then $\sin \theta =\dfrac{117}{125}$ and we have to compute $\cos \theta $
Consider triangle ABC as below with $\angle C\text{ as }\theta $
Then, as \[\sin \theta =\dfrac{\text{Perpendicular}}{\text{Hypotenuse}}\text{ and }\sin \theta =\dfrac{117}{125}\]
Perpendicular AB = 117 and Hypotenuse AC = 125.
Now, we will compute side BC of triangle ABC by using Pythagoras theorem stated as below:
In a right angled triangle, the square of the hypotenuse side is equal to the sum of squares of other two sides.
In $\Delta ABC$
\[\begin{align}
& {{\left( AC \right)}^{2}}={{\left( AB \right)}^{2}}+{{\left( BC \right)}^{2}} \\
& {{\left( 125 \right)}^{2}}={{\left( 117 \right)}^{2}}+{{\left( BC \right)}^{2}} \\
& {{\left( BC \right)}^{2}}={{\left( 125 \right)}^{2}}+{{\left( 117 \right)}^{2}} \\
& B{{C}^{2}}=15625-13689 \\
& B{{C}^{2}}=1936 \\
& BC=44 \\
\end{align}\]
So length of side BC = 44.
Now, we know that, \[\cos \theta =\dfrac{\text{Base}}{\text{Hypotenuse}}\]
\[\begin{align}
& \cos \theta =\dfrac{\text{Base}\to \text{BC}}{\text{Hypotenuse}\to \text{AC}} \\
& \cos \theta =\dfrac{\text{44}}{\text{125}} \\
\end{align}\]
The value of \[\left( ii \right)\cos 3\alpha =\dfrac{44}{125}\]
Finally we compute $\tan \theta $ by using formula $\tan \theta =\dfrac{\sin \theta }{\cos \theta }$
\[\text{as }\theta =3\alpha \Rightarrow \tan 3\alpha =\dfrac{\sin 3\alpha }{\cos 3\alpha }\]
Substituting the values of \[\sin 3\alpha \text{ as }\dfrac{117}{125}\text{ and }\cos 3\alpha \text{ as }\dfrac{44}{125}\]
\[\begin{align}
& \tan 3\alpha =\dfrac{\dfrac{117}{125}}{\dfrac{44}{125}} \\
& \tan 3\alpha =\dfrac{117}{44} \\
\end{align}\]
The value of \[\left( iii \right)\tan 3\alpha =\dfrac{117}{44}\]
Hence, our answer is:
\[\begin{align}
& \left( i \right)\sin 3\alpha =\dfrac{117}{125} \\
& \left( ii \right)\cos 3\alpha =\dfrac{44}{125} \\
& \left( iii \right)\tan 3\alpha =\dfrac{117}{44} \\
\end{align}\]
Note: Another way to calculate value of $\cos 3\alpha $ from $\sin 3\alpha $ is by using the trigonometric formula $\sin \theta =\sqrt{1-{{\cos }^{2}}\theta }$
\[\begin{align}
& \sin 3\alpha =\dfrac{117}{125} \\
& \Rightarrow \sqrt{1-{{\cos }^{2}}3\alpha }=\dfrac{117}{125} \\
& \Rightarrow 1-{{\cos }^{2}}3\alpha ={{\left( \dfrac{117}{125} \right)}^{2}}=\dfrac{13689}{15625} \\
& \Rightarrow {{\cos }^{2}}3\alpha =1-\dfrac{13689}{15625}=\dfrac{15625-13689}{15625} \\
& \Rightarrow \cos 3\alpha =\dfrac{44}{125} \\
\end{align}\]
Which is the correct value.
Recently Updated Pages
Questions & Answers - Ask your doubts

Master Class 9 Social Science: Engaging Questions & Answers for Success

Class 9 Question and Answer - Your Ultimate Solutions Guide

Master Class 8 Science: Engaging Questions & Answers for Success

Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Master Class 9 English: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Explain zero factorial class 11 maths CBSE

What is 1s 2s 2p 3s 3p class 11 chemistry CBSE

State the laws of reflection of light

Difference Between Prokaryotic Cells and Eukaryotic Cells

