
If the value of sec θ + tan θ is p then find the value of cosec θ.
Answer
604.2k+ views
Hint: Use the formulas like
$\begin{align}
& \sec \theta =\dfrac{1}{\cos \theta } \\
& \text{tan}\theta =\dfrac{\sin \theta }{\cos \theta } \\
\end{align}$
Complete step-by-step answer:
Convert the given equation in sin θ and cos θ.
Then convert cos θ into sin θ using the formula
${{\cos }^{2}}\theta +{{\sin }^{2}}\theta =1$
Then a quadratic equation in sin θ will form. Use the quadratic formula to find the value of sin θ. For a quadratic equation of the form
$a{{x}^{2}}+bx+c=0$
Roots are given by
$x=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}$
Then convert sin θ into cosec θ using the given below formula
$\text{cosec}\theta =\dfrac{1}{\sin \theta }$
We know that
$\begin{align}
& \sec \theta =\dfrac{1}{\cos \theta }\,\,\,\,\,\,\,\,\,\,\cdot \cdot \cdot \text{(i)} \\
& \text{tan}\theta =\dfrac{\sin \theta }{\cos \theta }\,\,\,\,\,\,\,\,\,\,\cdot \cdot \cdot \text{(ii)} \\
\end{align}$
Using the equation (i) and equation (ii) and converting the given equation into sin θ and cos θ as:
$\begin{align}
& \,\,\,\,\,\,\,\sec \theta +\tan \theta =p \\
& \Rightarrow \dfrac{1}{\cos \theta }+\dfrac{\sin \theta }{\cos \theta }=p \\
\end{align}$
$\Rightarrow \dfrac{1+\sin \theta }{\cos \theta }=p$
Multiplying cos θ on both side we get
$\begin{align}
& \,\,\,\,\,\,\dfrac{1+\sin \theta }{\cos \theta }\cos \theta =p\cos \theta \\
& \Rightarrow 1+\sin \theta =p\cos \theta \\
\end{align}$
Squaring both sides we get
$\begin{align}
& \,\,\,\,\,{{\left( 1+\sin \theta \right)}^{2}}={{p}^{2}}{{\cos }^{2}}\theta \\
& \Rightarrow 1+{{\sin }^{2}}\theta +2\sin \theta ={{p}^{2}}{{\cos }^{2}}\theta \,\,\,\,\,\,\,\,\,\cdot \cdot \cdot \text{(iii)} \\
\end{align}$
We know that
$\begin{align}
& \,\,\,\,\,\,\,{{\cos }^{2}}\theta +{{\sin }^{2}}\theta =1 \\
& \Rightarrow {{\cos }^{2}}\theta =1-{{\sin }^{2}}\theta \\
\end{align}$
Using the above equation in equation (iii) we get
$\begin{align}
& \,\,\,\,\,\,\,\,1+{{\sin }^{2}}\theta +2\sin \theta ={{p}^{2}}\left( 1-{{\sin }^{2}}\theta \right) \\
& \Rightarrow \left( {{p}^{2}}+1 \right){{\sin }^{2}}\theta +2\sin \theta +1-{{p}^{2}}=0 \\
\end{align}$
Let sin θ = t. Then we have
$\left( {{p}^{2}}+1 \right){{t}^{2}}+2t+1-{{p}^{2}}=0\,\,\,\,\,\cdot \cdot \cdot \text{(iv)}$
This is a quadratic equation in t. Now solving this equation to get the value of t in terms of p using the quadratic formula. The quadratic formula says that if the quadratic equation is
$a{{x}^{2}}+bx+c=0\,\,,\,\,a\ne 0\,\,\,\,\cdot \cdot \cdot \text{(v)}$
Then its roots are found by using the formula given below
$x=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}$
Since equation (iv) is a quadratic equation, comparing equation (iv) with equation (v) we get
$a={{p}^{2}}+1\,\,,\,\,b=2\,\,,\,\,c=1-{{p}^{2}}$
Using the quadratic formula to get the value of t
$\begin{align}
& t=\dfrac{-2\pm \sqrt{{{2}^{2}}-4\left( {{p}^{2}}+1 \right)\left( 1-{{p}^{2}} \right)}}{2\left( {{p}^{2}}+1 \right)} \\
& \Rightarrow t=\dfrac{-2\pm \sqrt{4-4\left( 1-{{p}^{4}} \right)}}{2\left( {{p}^{2}}+1 \right)} \\
& \Rightarrow t=\dfrac{-2\pm 2\sqrt{1-\left( 1-{{p}^{4}} \right)}}{2\left( {{p}^{2}}+1 \right)} \\
& \Rightarrow t=\dfrac{-1\pm \sqrt{{{p}^{4}}}}{{{p}^{2}}+1} \\
& \Rightarrow t=\dfrac{-1\pm {{p}^{2}}}{{{p}^{2}}+1} \\
& \Rightarrow t=\dfrac{-1-{{p}^{2}}}{{{p}^{2}}+1}\,\,\,\,\,\,\,\,\,\,\,\,\,\text{or }t=\dfrac{{{p}^{2}}-1}{{{p}^{2}}+1}\, \\
& \Rightarrow t=-1\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\text{or }t=1-\dfrac{2}{{{p}^{2}}+1} \\
\end{align}$
If $t=-1$ ,
$\begin{align}
& \sin \theta =-1 \\
& \Rightarrow \cos \theta =\sqrt{1-{{\sin }^{2}}\theta }=\sqrt{1-{{(-1)}^{2}}}=\sqrt{1-1}=0 \\
\end{align}$
Then $\sec \theta $ will not be defined.
So, $t=1-\dfrac{1}{{{p}^{2}}+1}$
$\begin{align}
& \Rightarrow \sin \theta =1-\dfrac{2}{{{p}^{2}}+1} \\
& \Rightarrow \sin \theta =\dfrac{{{p}^{2}}-1}{{{p}^{2}}+1} \\
\end{align}$
Using the formula
$\text{cosec}\theta =\dfrac{1}{\sin \theta }$
We get the value of $\text{cosec}\theta $as
$\begin{align}
& \text{cosec}\theta =\dfrac{1}{\sin \theta } \\
& \Rightarrow \text{cosec}\theta =\dfrac{{{p}^{2}}+1}{{{p}^{2}}-1} \\
\end{align}$
Hence the value of $\text{cosec}\theta $ is found to be $\dfrac{{{p}^{2}}+1}{{{p}^{2}}-1}$
Note: There is one alternate method which is quite easy and short. This method uses the formula
$\begin{align}
& {{\sec }^{2}}\theta -{{\tan }^{2}}\theta =1 \\
& \Rightarrow \left( \sec \theta -\tan \theta \right)\left( \sec \theta +\tan \theta \right)=1 \\
\end{align}$
So if $\sec \theta +\tan \theta =p$then $\sec \theta -\tan \theta =\dfrac{1}{p}$
Now subtracting second equation by first we get
$\begin{align}
& 2\tan \theta =p-\dfrac{1}{p} \\
& \Rightarrow \tan \theta =\dfrac{{{p}^{2}}-1}{2p} \\
& \Rightarrow \cot \theta =\dfrac{2p}{{{p}^{2}}-1} \\
\end{align}$
We know that
$\begin{align}
& \text{cose}{{\text{c}}^{2}}\theta =1+{{\cot }^{2}}\theta \\
& \Rightarrow \text{cose}{{\text{c}}^{2}}\theta =1+\dfrac{4{{p}^{2}}}{{{\left( {{p}^{2}}-1 \right)}^{2}}} \\
& \Rightarrow \text{cose}{{\text{c}}^{2}}\theta =\dfrac{{{\left( {{p}^{2}}+1 \right)}^{2}}}{{{\left( {{p}^{2}}-1 \right)}^{2}}} \\
& \Rightarrow \text{cosec}\theta =\dfrac{{{p}^{2}}+1}{{{p}^{2}}-1} \\
\end{align}$
$\begin{align}
& \sec \theta =\dfrac{1}{\cos \theta } \\
& \text{tan}\theta =\dfrac{\sin \theta }{\cos \theta } \\
\end{align}$
Complete step-by-step answer:
Convert the given equation in sin θ and cos θ.
Then convert cos θ into sin θ using the formula
${{\cos }^{2}}\theta +{{\sin }^{2}}\theta =1$
Then a quadratic equation in sin θ will form. Use the quadratic formula to find the value of sin θ. For a quadratic equation of the form
$a{{x}^{2}}+bx+c=0$
Roots are given by
$x=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}$
Then convert sin θ into cosec θ using the given below formula
$\text{cosec}\theta =\dfrac{1}{\sin \theta }$
We know that
$\begin{align}
& \sec \theta =\dfrac{1}{\cos \theta }\,\,\,\,\,\,\,\,\,\,\cdot \cdot \cdot \text{(i)} \\
& \text{tan}\theta =\dfrac{\sin \theta }{\cos \theta }\,\,\,\,\,\,\,\,\,\,\cdot \cdot \cdot \text{(ii)} \\
\end{align}$
Using the equation (i) and equation (ii) and converting the given equation into sin θ and cos θ as:
$\begin{align}
& \,\,\,\,\,\,\,\sec \theta +\tan \theta =p \\
& \Rightarrow \dfrac{1}{\cos \theta }+\dfrac{\sin \theta }{\cos \theta }=p \\
\end{align}$
$\Rightarrow \dfrac{1+\sin \theta }{\cos \theta }=p$
Multiplying cos θ on both side we get
$\begin{align}
& \,\,\,\,\,\,\dfrac{1+\sin \theta }{\cos \theta }\cos \theta =p\cos \theta \\
& \Rightarrow 1+\sin \theta =p\cos \theta \\
\end{align}$
Squaring both sides we get
$\begin{align}
& \,\,\,\,\,{{\left( 1+\sin \theta \right)}^{2}}={{p}^{2}}{{\cos }^{2}}\theta \\
& \Rightarrow 1+{{\sin }^{2}}\theta +2\sin \theta ={{p}^{2}}{{\cos }^{2}}\theta \,\,\,\,\,\,\,\,\,\cdot \cdot \cdot \text{(iii)} \\
\end{align}$
We know that
$\begin{align}
& \,\,\,\,\,\,\,{{\cos }^{2}}\theta +{{\sin }^{2}}\theta =1 \\
& \Rightarrow {{\cos }^{2}}\theta =1-{{\sin }^{2}}\theta \\
\end{align}$
Using the above equation in equation (iii) we get
$\begin{align}
& \,\,\,\,\,\,\,\,1+{{\sin }^{2}}\theta +2\sin \theta ={{p}^{2}}\left( 1-{{\sin }^{2}}\theta \right) \\
& \Rightarrow \left( {{p}^{2}}+1 \right){{\sin }^{2}}\theta +2\sin \theta +1-{{p}^{2}}=0 \\
\end{align}$
Let sin θ = t. Then we have
$\left( {{p}^{2}}+1 \right){{t}^{2}}+2t+1-{{p}^{2}}=0\,\,\,\,\,\cdot \cdot \cdot \text{(iv)}$
This is a quadratic equation in t. Now solving this equation to get the value of t in terms of p using the quadratic formula. The quadratic formula says that if the quadratic equation is
$a{{x}^{2}}+bx+c=0\,\,,\,\,a\ne 0\,\,\,\,\cdot \cdot \cdot \text{(v)}$
Then its roots are found by using the formula given below
$x=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}$
Since equation (iv) is a quadratic equation, comparing equation (iv) with equation (v) we get
$a={{p}^{2}}+1\,\,,\,\,b=2\,\,,\,\,c=1-{{p}^{2}}$
Using the quadratic formula to get the value of t
$\begin{align}
& t=\dfrac{-2\pm \sqrt{{{2}^{2}}-4\left( {{p}^{2}}+1 \right)\left( 1-{{p}^{2}} \right)}}{2\left( {{p}^{2}}+1 \right)} \\
& \Rightarrow t=\dfrac{-2\pm \sqrt{4-4\left( 1-{{p}^{4}} \right)}}{2\left( {{p}^{2}}+1 \right)} \\
& \Rightarrow t=\dfrac{-2\pm 2\sqrt{1-\left( 1-{{p}^{4}} \right)}}{2\left( {{p}^{2}}+1 \right)} \\
& \Rightarrow t=\dfrac{-1\pm \sqrt{{{p}^{4}}}}{{{p}^{2}}+1} \\
& \Rightarrow t=\dfrac{-1\pm {{p}^{2}}}{{{p}^{2}}+1} \\
& \Rightarrow t=\dfrac{-1-{{p}^{2}}}{{{p}^{2}}+1}\,\,\,\,\,\,\,\,\,\,\,\,\,\text{or }t=\dfrac{{{p}^{2}}-1}{{{p}^{2}}+1}\, \\
& \Rightarrow t=-1\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\text{or }t=1-\dfrac{2}{{{p}^{2}}+1} \\
\end{align}$
If $t=-1$ ,
$\begin{align}
& \sin \theta =-1 \\
& \Rightarrow \cos \theta =\sqrt{1-{{\sin }^{2}}\theta }=\sqrt{1-{{(-1)}^{2}}}=\sqrt{1-1}=0 \\
\end{align}$
Then $\sec \theta $ will not be defined.
So, $t=1-\dfrac{1}{{{p}^{2}}+1}$
$\begin{align}
& \Rightarrow \sin \theta =1-\dfrac{2}{{{p}^{2}}+1} \\
& \Rightarrow \sin \theta =\dfrac{{{p}^{2}}-1}{{{p}^{2}}+1} \\
\end{align}$
Using the formula
$\text{cosec}\theta =\dfrac{1}{\sin \theta }$
We get the value of $\text{cosec}\theta $as
$\begin{align}
& \text{cosec}\theta =\dfrac{1}{\sin \theta } \\
& \Rightarrow \text{cosec}\theta =\dfrac{{{p}^{2}}+1}{{{p}^{2}}-1} \\
\end{align}$
Hence the value of $\text{cosec}\theta $ is found to be $\dfrac{{{p}^{2}}+1}{{{p}^{2}}-1}$
Note: There is one alternate method which is quite easy and short. This method uses the formula
$\begin{align}
& {{\sec }^{2}}\theta -{{\tan }^{2}}\theta =1 \\
& \Rightarrow \left( \sec \theta -\tan \theta \right)\left( \sec \theta +\tan \theta \right)=1 \\
\end{align}$
So if $\sec \theta +\tan \theta =p$then $\sec \theta -\tan \theta =\dfrac{1}{p}$
Now subtracting second equation by first we get
$\begin{align}
& 2\tan \theta =p-\dfrac{1}{p} \\
& \Rightarrow \tan \theta =\dfrac{{{p}^{2}}-1}{2p} \\
& \Rightarrow \cot \theta =\dfrac{2p}{{{p}^{2}}-1} \\
\end{align}$
We know that
$\begin{align}
& \text{cose}{{\text{c}}^{2}}\theta =1+{{\cot }^{2}}\theta \\
& \Rightarrow \text{cose}{{\text{c}}^{2}}\theta =1+\dfrac{4{{p}^{2}}}{{{\left( {{p}^{2}}-1 \right)}^{2}}} \\
& \Rightarrow \text{cose}{{\text{c}}^{2}}\theta =\dfrac{{{\left( {{p}^{2}}+1 \right)}^{2}}}{{{\left( {{p}^{2}}-1 \right)}^{2}}} \\
& \Rightarrow \text{cosec}\theta =\dfrac{{{p}^{2}}+1}{{{p}^{2}}-1} \\
\end{align}$
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

