Answer
Verified
419.7k+ views
Hint: It is given that the $x + \dfrac{1}{x} = {3^{\dfrac{1}{3}}}$ so for the part (i) $x - \dfrac{1}{x}$ = $y$ , On squaring both we get ${x^2} + \dfrac{1}{{{x^2}}} - 2 = {y^2}$ now find the value of ${x^2} + \dfrac{1}{{{x^2}}}$ from $x + \dfrac{1}{x} = {3^{\dfrac{1}{3}}}$ and put it and get the value of $y$
Now for the part (ii) ${x^3} - \dfrac{1}{{{x^3}}}$ use formula ${a^3} - {b^3} = (a - b)({a^2} + ab + {b^2})$ so from above $a = x$ and $b = \dfrac{1}{x}$ we know the value of ${x^2} + \dfrac{1}{{{x^2}}}$ and $x - \dfrac{1}{x}$ from part (i)
Complete step-by-step answer:
As in the given in the question that is $\dfrac{{{x^2} + 1}}{x} = {3^{\dfrac{1}{3}}}$ , make change in it ,
$x + \dfrac{1}{x} = {3^{\dfrac{1}{3}}}$
So from this we have to find the value of (i) $x - \dfrac{1}{x}$ (ii) ${x^3} - \dfrac{1}{{{x^3}}}$
Now for the part (i) $x - \dfrac{1}{x}$
Let $x - \dfrac{1}{x}$ $ = y$
Now square both side
$\Rightarrow$ ${\left( {x - \dfrac{1}{x}} \right)^2}$ $ = {y^2}$
$\Rightarrow$ ${x^2} + \dfrac{1}{{{x^2}}} - 2 = {y^2}$ .......(i)
Now we have to find the value of ${x^2} + \dfrac{1}{{{x^2}}}$ for finding the value of $y$
So from the question $x + \dfrac{1}{x} = {3^{\dfrac{1}{3}}}$ , on squaring both side ,
$\Rightarrow$ ${x^2} + \dfrac{1}{{{x^2}}} + 2 = {3^{\dfrac{2}{3}}}$
Now put the value of ${x^2} + \dfrac{1}{{{x^2}}} = {3^{\dfrac{2}{3}}} - 2$ in equation (i)
$\Rightarrow$ ${3^{\dfrac{2}{3}}} - 2 - 2 = {y^2}$
$\Rightarrow$ ${3^{\dfrac{2}{3}}} - 4 = {y^2}$
Hence $y = \sqrt {{3^{\dfrac{2}{3}}} - 4} $ i.e.
$\Rightarrow$ $x - \dfrac{1}{x}$ = $y = \sqrt {{3^{\dfrac{2}{3}}} - 4} $
Now for the part (ii) ${x^3} - \dfrac{1}{{{x^3}}}$
we know the formula of ${a^3} - {b^3} = (a - b)({a^2} + ab + {b^2})$
So from above $a = x$ and $b = \dfrac{1}{x}$
${x^3} - \dfrac{1}{{{x^3}}}$ = $\left( {x - \dfrac{1}{x}} \right)\left( {{x^2} + x \times \dfrac{1}{x} + \dfrac{1}{{{x^2}}}} \right)$
on solving more
$\Rightarrow$ ${x^3} - \dfrac{1}{{{x^3}}}$ = $\left( {x - \dfrac{1}{x}} \right)\left( {{x^2} + \dfrac{1}{{{x^2}}} + 1} \right)$
So from question we know that $x - \dfrac{1}{x} = \sqrt {{3^{\dfrac{2}{3}}} - 4} $ and above we find that ${x^2} + \dfrac{1}{{{x^2}}} = {3^{\dfrac{2}{3}}} - 2$ , on putting these value we get
$\Rightarrow$ ${x^3} - \dfrac{1}{{{x^3}}}$ = $\left( {\sqrt {{3^{\dfrac{2}{3}}} - 4} } \right)\left( {{3^{\dfrac{2}{3}}} - 2 + 1} \right)$
On multiplying we get ,
$\Rightarrow$ ${x^3} - \dfrac{1}{{{x^3}}}$ = $\left( {\sqrt {{3^{\dfrac{2}{3}}} - 4} } \right)\left( {{3^{\dfrac{2}{3}}} - 1} \right)$
we get , ${x^3} - \dfrac{1}{{{x^3}}}$ = $\left( {\sqrt {{3^{\dfrac{2}{3}}} - 4} } \right)\left( {{3^{\dfrac{2}{3}}} - 1} \right)$
Hence the value of (i) $x - \dfrac{1}{x}$ = $\sqrt {{3^{\dfrac{2}{3}}} - 4} $
(ii) ${x^3} - \dfrac{1}{{{x^3}}}$ = $\left( {\sqrt {{3^{\dfrac{2}{3}}} - 4} } \right)\left( {{3^{\dfrac{2}{3}}} - 1} \right)$
Note: If in the question it is given to find the value of ${x^3} + \dfrac{1}{{{x^3}}}$ then we use the formula that is of ${a^3} + {b^3} = (a + b)({a^2} - ab + {b^2})$ so from above $a = x$ and $b = \dfrac{1}{x}$ on putting we get the
${x^3} + \dfrac{1}{{{x^3}}}$ = $\left( {x + \dfrac{1}{x}} \right)\left( {{x^2} - x \times \dfrac{1}{x} + \dfrac{1}{{{x^2}}}} \right)$ so from above $x + \dfrac{1}{x} = {3^{\dfrac{1}{3}}}$ and ${x^2} + \dfrac{1}{{{x^2}}} = {3^{\dfrac{2}{3}}} - 2$ put these value and get the answer .
Now for the part (ii) ${x^3} - \dfrac{1}{{{x^3}}}$ use formula ${a^3} - {b^3} = (a - b)({a^2} + ab + {b^2})$ so from above $a = x$ and $b = \dfrac{1}{x}$ we know the value of ${x^2} + \dfrac{1}{{{x^2}}}$ and $x - \dfrac{1}{x}$ from part (i)
Complete step-by-step answer:
As in the given in the question that is $\dfrac{{{x^2} + 1}}{x} = {3^{\dfrac{1}{3}}}$ , make change in it ,
$x + \dfrac{1}{x} = {3^{\dfrac{1}{3}}}$
So from this we have to find the value of (i) $x - \dfrac{1}{x}$ (ii) ${x^3} - \dfrac{1}{{{x^3}}}$
Now for the part (i) $x - \dfrac{1}{x}$
Let $x - \dfrac{1}{x}$ $ = y$
Now square both side
$\Rightarrow$ ${\left( {x - \dfrac{1}{x}} \right)^2}$ $ = {y^2}$
$\Rightarrow$ ${x^2} + \dfrac{1}{{{x^2}}} - 2 = {y^2}$ .......(i)
Now we have to find the value of ${x^2} + \dfrac{1}{{{x^2}}}$ for finding the value of $y$
So from the question $x + \dfrac{1}{x} = {3^{\dfrac{1}{3}}}$ , on squaring both side ,
$\Rightarrow$ ${x^2} + \dfrac{1}{{{x^2}}} + 2 = {3^{\dfrac{2}{3}}}$
Now put the value of ${x^2} + \dfrac{1}{{{x^2}}} = {3^{\dfrac{2}{3}}} - 2$ in equation (i)
$\Rightarrow$ ${3^{\dfrac{2}{3}}} - 2 - 2 = {y^2}$
$\Rightarrow$ ${3^{\dfrac{2}{3}}} - 4 = {y^2}$
Hence $y = \sqrt {{3^{\dfrac{2}{3}}} - 4} $ i.e.
$\Rightarrow$ $x - \dfrac{1}{x}$ = $y = \sqrt {{3^{\dfrac{2}{3}}} - 4} $
Now for the part (ii) ${x^3} - \dfrac{1}{{{x^3}}}$
we know the formula of ${a^3} - {b^3} = (a - b)({a^2} + ab + {b^2})$
So from above $a = x$ and $b = \dfrac{1}{x}$
${x^3} - \dfrac{1}{{{x^3}}}$ = $\left( {x - \dfrac{1}{x}} \right)\left( {{x^2} + x \times \dfrac{1}{x} + \dfrac{1}{{{x^2}}}} \right)$
on solving more
$\Rightarrow$ ${x^3} - \dfrac{1}{{{x^3}}}$ = $\left( {x - \dfrac{1}{x}} \right)\left( {{x^2} + \dfrac{1}{{{x^2}}} + 1} \right)$
So from question we know that $x - \dfrac{1}{x} = \sqrt {{3^{\dfrac{2}{3}}} - 4} $ and above we find that ${x^2} + \dfrac{1}{{{x^2}}} = {3^{\dfrac{2}{3}}} - 2$ , on putting these value we get
$\Rightarrow$ ${x^3} - \dfrac{1}{{{x^3}}}$ = $\left( {\sqrt {{3^{\dfrac{2}{3}}} - 4} } \right)\left( {{3^{\dfrac{2}{3}}} - 2 + 1} \right)$
On multiplying we get ,
$\Rightarrow$ ${x^3} - \dfrac{1}{{{x^3}}}$ = $\left( {\sqrt {{3^{\dfrac{2}{3}}} - 4} } \right)\left( {{3^{\dfrac{2}{3}}} - 1} \right)$
we get , ${x^3} - \dfrac{1}{{{x^3}}}$ = $\left( {\sqrt {{3^{\dfrac{2}{3}}} - 4} } \right)\left( {{3^{\dfrac{2}{3}}} - 1} \right)$
Hence the value of (i) $x - \dfrac{1}{x}$ = $\sqrt {{3^{\dfrac{2}{3}}} - 4} $
(ii) ${x^3} - \dfrac{1}{{{x^3}}}$ = $\left( {\sqrt {{3^{\dfrac{2}{3}}} - 4} } \right)\left( {{3^{\dfrac{2}{3}}} - 1} \right)$
Note: If in the question it is given to find the value of ${x^3} + \dfrac{1}{{{x^3}}}$ then we use the formula that is of ${a^3} + {b^3} = (a + b)({a^2} - ab + {b^2})$ so from above $a = x$ and $b = \dfrac{1}{x}$ on putting we get the
${x^3} + \dfrac{1}{{{x^3}}}$ = $\left( {x + \dfrac{1}{x}} \right)\left( {{x^2} - x \times \dfrac{1}{x} + \dfrac{1}{{{x^2}}}} \right)$ so from above $x + \dfrac{1}{x} = {3^{\dfrac{1}{3}}}$ and ${x^2} + \dfrac{1}{{{x^2}}} = {3^{\dfrac{2}{3}}} - 2$ put these value and get the answer .
Recently Updated Pages
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Advantages and disadvantages of science
Trending doubts
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Give 10 examples for herbs , shrubs , climbers , creepers
10 examples of evaporation in daily life with explanations
Difference Between Plant Cell and Animal Cell
Write a letter to the principal requesting him to grant class 10 english CBSE
Change the following sentences into negative and interrogative class 10 english CBSE