
If the value of $\alpha = {e^{i\dfrac{{8\pi }}{{11}}}}$ then the real value of $\left( {\alpha + {\alpha ^2} + {\alpha ^3} + {\alpha ^4} + {\alpha ^5}} \right)$ equal to
(A) $0$
(B) $1$
(C) $ - \dfrac{1}{2}$
(D) $ - 1$
Answer
560.7k+ views
Hint: We have given a complex exponent number and we have to determine the real value of the given expression. To find out the real value of the given expression, first, we separate the real part of each term by using the Euler’s formula ${e^{i\theta }} = \cos \theta + i\sin \theta $ .
After that we use the standard result of AP that is
$\cos A + \cos \left( {A + B} \right) + \cos \left( {A + 2B} \right) + ..... + \cos \left( {A + \left( {n - 1} \right)B} \right) = \dfrac{{\cos \left( {A + \dfrac{{\left( {n - 1} \right)B}}{2}} \right)\sin \dfrac{{nB}}{2}}}{{\sin \dfrac{B}{2}}}$
After separating the real terms substitute the values of the cosine of the angles and evaluate the result.
Complete step-by-step answer:
Step1: Apply Euler’s formula to determine the value of $\alpha $
We have given the value of $\alpha = {e^{i\dfrac{{8\pi }}{{11}}}}$ . We apply Euler’s formula, we get
\[ \Rightarrow \alpha = \cos \dfrac{{8\pi }}{{11}} + i\sin \dfrac{{8\pi }}{{11}}\] …..(1)
Step2: Find the value of each term in the given expression
The given expression is $\left( {\alpha + {\alpha ^2} + {\alpha ^3} + {\alpha ^4} + {\alpha ^5}} \right)$
The value of ${\alpha ^2}$ is given as \[{\alpha ^2} = {\left( {{e^{i\dfrac{{8\pi }}{{11}}}}} \right)^2}\]
Applying the exponent rule, we get \[{\alpha ^2} = {e^{i\dfrac{{16\pi }}{{11}}}}\]
Applying Euler’s formula, we get \[{\alpha ^2} = \cos \dfrac{{16\pi }}{{11}} + i\sin \dfrac{{16\pi }}{{11}}\] …..(2)
The value of ${\alpha ^2}$ is given as \[{\alpha ^3} = {\left( {{e^{i\dfrac{{8\pi }}{{11}}}}} \right)^3}\]
Applying the exponent rule, we get \[{\alpha ^3} = {e^{i\dfrac{{24\pi }}{{11}}}}\]
Applying Euler’s formula, we get \[{\alpha ^3} = \cos \dfrac{{24\pi }}{{11}} + i\sin \dfrac{{24\pi }}{{11}}\] …..(3)
The value of ${\alpha ^4}$ is given as \[{\alpha ^4} = {\left( {{e^{i\dfrac{{8\pi }}{{11}}}}} \right)^4}\]
Applying the exponent rule, we get \[{\alpha ^4} = {e^{i\dfrac{{32\pi }}{{11}}}}\]
Applying Euler’s formula, we get \[{\alpha ^4} = \cos \dfrac{{32\pi }}{{11}} + i\sin \dfrac{{32\pi }}{{11}}\] …..(4)
The value of ${\alpha ^5}$ is given as \[{\alpha ^5} = {\left( {{e^{i\dfrac{{8\pi }}{{11}}}}} \right)^5}\]
Applying the exponent rule, we get \[{\alpha ^5} = {e^{i\dfrac{{40\pi }}{{11}}}}\]
Applying Euler’s formula, we get \[{\alpha ^5} = \cos \dfrac{{40\pi }}{{11}} + i\sin \dfrac{{40\pi }}{{11}}\] …..(5)
Step3: Add the real part of each term
Now we add the real part of each term in equation (1) to equation (5), we get
$
\operatorname{Re} \left( {\alpha + {\alpha ^2} + {\alpha ^3} + {\alpha ^4} + {\alpha ^5}} \right) \\
\Rightarrow \cos \dfrac{{8\pi }}{{11}} + \cos \dfrac{{16\pi }}{{11}} + \cos \dfrac{{24\pi }}{{11}} + \cos \dfrac{{32\pi }}{{11}} + \cos \dfrac{{40\pi }}{{11}} \\
$
Step 4: Substitute the values
Now substituting the values of each term, we get
$
\Rightarrow \cos \dfrac{{8\pi }}{{11}} + \cos \dfrac{{16\pi }}{{11}} + \cos \dfrac{{24\pi }}{{11}} + \cos \dfrac{{32\pi }}{{11}} + \cos \dfrac{{40\pi }}{{11}} \\
\Rightarrow - 0.654 - 0.142 + 0.841 - 0.959 + 0.415 \\
\Rightarrow - 0.50 \\
$
So the value of \[\operatorname{Re} \left( {\alpha + {\alpha ^2} + {\alpha ^3} + {\alpha ^4} + {\alpha ^5}} \right) = - \dfrac{1}{2}\].
Note:
To solve such a type of question, separate the real and imaginary part first and then simplify for the real part.
Commit to memory:
Euler’s Formula: ${e^{i\theta }} = \cos \theta + i\sin \theta $
Power law of exponent ${\left( {{a^m}} \right)^n} = {a^{m \times n}}$
After that we use the standard result of AP that is
$\cos A + \cos \left( {A + B} \right) + \cos \left( {A + 2B} \right) + ..... + \cos \left( {A + \left( {n - 1} \right)B} \right) = \dfrac{{\cos \left( {A + \dfrac{{\left( {n - 1} \right)B}}{2}} \right)\sin \dfrac{{nB}}{2}}}{{\sin \dfrac{B}{2}}}$
After separating the real terms substitute the values of the cosine of the angles and evaluate the result.
Complete step-by-step answer:
Step1: Apply Euler’s formula to determine the value of $\alpha $
We have given the value of $\alpha = {e^{i\dfrac{{8\pi }}{{11}}}}$ . We apply Euler’s formula, we get
\[ \Rightarrow \alpha = \cos \dfrac{{8\pi }}{{11}} + i\sin \dfrac{{8\pi }}{{11}}\] …..(1)
Step2: Find the value of each term in the given expression
The given expression is $\left( {\alpha + {\alpha ^2} + {\alpha ^3} + {\alpha ^4} + {\alpha ^5}} \right)$
The value of ${\alpha ^2}$ is given as \[{\alpha ^2} = {\left( {{e^{i\dfrac{{8\pi }}{{11}}}}} \right)^2}\]
Applying the exponent rule, we get \[{\alpha ^2} = {e^{i\dfrac{{16\pi }}{{11}}}}\]
Applying Euler’s formula, we get \[{\alpha ^2} = \cos \dfrac{{16\pi }}{{11}} + i\sin \dfrac{{16\pi }}{{11}}\] …..(2)
The value of ${\alpha ^2}$ is given as \[{\alpha ^3} = {\left( {{e^{i\dfrac{{8\pi }}{{11}}}}} \right)^3}\]
Applying the exponent rule, we get \[{\alpha ^3} = {e^{i\dfrac{{24\pi }}{{11}}}}\]
Applying Euler’s formula, we get \[{\alpha ^3} = \cos \dfrac{{24\pi }}{{11}} + i\sin \dfrac{{24\pi }}{{11}}\] …..(3)
The value of ${\alpha ^4}$ is given as \[{\alpha ^4} = {\left( {{e^{i\dfrac{{8\pi }}{{11}}}}} \right)^4}\]
Applying the exponent rule, we get \[{\alpha ^4} = {e^{i\dfrac{{32\pi }}{{11}}}}\]
Applying Euler’s formula, we get \[{\alpha ^4} = \cos \dfrac{{32\pi }}{{11}} + i\sin \dfrac{{32\pi }}{{11}}\] …..(4)
The value of ${\alpha ^5}$ is given as \[{\alpha ^5} = {\left( {{e^{i\dfrac{{8\pi }}{{11}}}}} \right)^5}\]
Applying the exponent rule, we get \[{\alpha ^5} = {e^{i\dfrac{{40\pi }}{{11}}}}\]
Applying Euler’s formula, we get \[{\alpha ^5} = \cos \dfrac{{40\pi }}{{11}} + i\sin \dfrac{{40\pi }}{{11}}\] …..(5)
Step3: Add the real part of each term
Now we add the real part of each term in equation (1) to equation (5), we get
$
\operatorname{Re} \left( {\alpha + {\alpha ^2} + {\alpha ^3} + {\alpha ^4} + {\alpha ^5}} \right) \\
\Rightarrow \cos \dfrac{{8\pi }}{{11}} + \cos \dfrac{{16\pi }}{{11}} + \cos \dfrac{{24\pi }}{{11}} + \cos \dfrac{{32\pi }}{{11}} + \cos \dfrac{{40\pi }}{{11}} \\
$
Step 4: Substitute the values
Now substituting the values of each term, we get
$
\Rightarrow \cos \dfrac{{8\pi }}{{11}} + \cos \dfrac{{16\pi }}{{11}} + \cos \dfrac{{24\pi }}{{11}} + \cos \dfrac{{32\pi }}{{11}} + \cos \dfrac{{40\pi }}{{11}} \\
\Rightarrow - 0.654 - 0.142 + 0.841 - 0.959 + 0.415 \\
\Rightarrow - 0.50 \\
$
So the value of \[\operatorname{Re} \left( {\alpha + {\alpha ^2} + {\alpha ^3} + {\alpha ^4} + {\alpha ^5}} \right) = - \dfrac{1}{2}\].
Note:
To solve such a type of question, separate the real and imaginary part first and then simplify for the real part.
Commit to memory:
Euler’s Formula: ${e^{i\theta }} = \cos \theta + i\sin \theta $
Power law of exponent ${\left( {{a^m}} \right)^n} = {a^{m \times n}}$
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

