
If the value of $(1 + \sqrt {1 + x} \tan y = 1 + \sqrt {1 - x} )$, then $\sin 4y$ is equal to
A.4x
B.2x
C.x
D.None of these
Answer
601.5k+ views
Hint: Use basic trigonometric conversions like $\sin C + \sin D = 2\sin (\dfrac{{C + D}}{2})\cos (\dfrac{{C - D}}{2}),\cos C + \cos D = 2\cos (\dfrac{{C + D}}{2})\cos (\dfrac{{C - D}}{2})$ and $\tan x = \dfrac{{\sin x}}{{\cos x}}$. Use this to find the value of $\sin 4y$.
$\tan y = \dfrac{{1 + \sqrt {1 - x} }}{{1 + \sqrt {1 + x} }}$……………..(i)
Complete step-by-step answer:
Let $x = \cos \theta $
$ \Rightarrow $$1 + x = 1 + \cos \theta $
$ = 2{\cos ^2}(\dfrac{\theta }{2})$
$ \Rightarrow \sqrt {1 + x} = \sqrt 2 \cos \dfrac{\theta }{2}$
Similarly ,
$ \Rightarrow 1 - x = 1 - \cos \theta $
$ = 2{\sin ^2}\dfrac{\theta }{2}$
$ \Rightarrow \sqrt {1 - x} = \sqrt 2 \sin \dfrac{\theta }{2}$, Hence substituting the value of $\sqrt {1 - x} $ in equation(i)
We get,
$\tan y = \dfrac{{1 + \sqrt {1 - x} }}{{1 + \sqrt {1 + x} }}$
$
= \dfrac{{1 + \sqrt 2 \sin (\dfrac{\theta }{2})}}{{1 + \sqrt 2 \cos \dfrac{\theta }{2}}} \\
= \dfrac{{\sqrt 2 (\dfrac{1}{{\sqrt 2 }} + \sin (\dfrac{\theta }{2}))}}{{\sqrt 2 (\dfrac{1}{{\sqrt 2 }} + \cos (\dfrac{\theta }{2}))}} \\
$
As we know that $\dfrac{1}{{\sqrt 2 }}$can be written as $\dfrac{\pi }{4}$.
Hence, $\tan y = \dfrac{{\sin \dfrac{\pi }{4} + \sin \dfrac{\theta }{2}}}{{\cos \dfrac{\pi }{4} + \cos \dfrac{\theta }{2}}}$
We know that ,
$
\sin C + \sin D = 2\sin (\dfrac{{C + D}}{2})\cos (\dfrac{{C - D}}{2}) \\
\cos C + \cos D = 2\cos (\dfrac{{C + D}}{2})\cos (\dfrac{{C - D}}{2}) \\
$
Hence substituting the value in $\tan y = \dfrac{{\sin \dfrac{\pi }{4} + \sin \dfrac{\theta }{2}}}{{\cos \dfrac{\pi }{4} + \cos \dfrac{\theta }{2}}}$ , we get
$\therefore $$\tan y = \dfrac{{2\sin (\dfrac{\pi }{8} + \dfrac{\theta }{4})\cos (\dfrac{\pi }{8} - \dfrac{\theta }{4})}}{{2\cos (\dfrac{\pi }{8} + \dfrac{\theta }{4})\cos (\dfrac{\pi }{8} - \dfrac{\theta }{4})}}$
By simplifying we get , \[\tan y = \dfrac{{\sin (\dfrac{\pi }{8} + \dfrac{\theta }{4})}}{{\cos (\dfrac{\pi }{8} + \dfrac{\theta }{4})}}\] hence we know that $\tan x = \dfrac{{\sin x}}{{\cos x}}$
Hence by substituting the value we get ,
$ \Rightarrow $ $\tan y = \tan (\dfrac{\pi }{8} + \dfrac{\theta }{4})$
$
\Rightarrow y = \dfrac{\pi }{8} + \dfrac{\theta }{4} \\
\Rightarrow 4y = \dfrac{\pi }{2} + \theta \\
$
Hence according to question we have to find $\sin 4y$, so
$\sin 4y = \sin (\dfrac{\pi }{2} + \theta )$
Hence , $(\dfrac{\pi }{2} + \theta )$ lies in second quadrant , where $\sin $ is positive , hence it is equal to $\cos \theta $ and initially we have assumed $\cos \theta $$ = x$.
$\therefore \sin 4y = x$
Note: It is always advisable to remember such basic conversions while involving trigonometric questions as it helps save a lot of time. Trigonometric identity and sign of all trigonometric functions in all the quadrants is required to solve this problem.
$\tan y = \dfrac{{1 + \sqrt {1 - x} }}{{1 + \sqrt {1 + x} }}$……………..(i)
Complete step-by-step answer:
Let $x = \cos \theta $
$ \Rightarrow $$1 + x = 1 + \cos \theta $
$ = 2{\cos ^2}(\dfrac{\theta }{2})$
$ \Rightarrow \sqrt {1 + x} = \sqrt 2 \cos \dfrac{\theta }{2}$
Similarly ,
$ \Rightarrow 1 - x = 1 - \cos \theta $
$ = 2{\sin ^2}\dfrac{\theta }{2}$
$ \Rightarrow \sqrt {1 - x} = \sqrt 2 \sin \dfrac{\theta }{2}$, Hence substituting the value of $\sqrt {1 - x} $ in equation(i)
We get,
$\tan y = \dfrac{{1 + \sqrt {1 - x} }}{{1 + \sqrt {1 + x} }}$
$
= \dfrac{{1 + \sqrt 2 \sin (\dfrac{\theta }{2})}}{{1 + \sqrt 2 \cos \dfrac{\theta }{2}}} \\
= \dfrac{{\sqrt 2 (\dfrac{1}{{\sqrt 2 }} + \sin (\dfrac{\theta }{2}))}}{{\sqrt 2 (\dfrac{1}{{\sqrt 2 }} + \cos (\dfrac{\theta }{2}))}} \\
$
As we know that $\dfrac{1}{{\sqrt 2 }}$can be written as $\dfrac{\pi }{4}$.
Hence, $\tan y = \dfrac{{\sin \dfrac{\pi }{4} + \sin \dfrac{\theta }{2}}}{{\cos \dfrac{\pi }{4} + \cos \dfrac{\theta }{2}}}$
We know that ,
$
\sin C + \sin D = 2\sin (\dfrac{{C + D}}{2})\cos (\dfrac{{C - D}}{2}) \\
\cos C + \cos D = 2\cos (\dfrac{{C + D}}{2})\cos (\dfrac{{C - D}}{2}) \\
$
Hence substituting the value in $\tan y = \dfrac{{\sin \dfrac{\pi }{4} + \sin \dfrac{\theta }{2}}}{{\cos \dfrac{\pi }{4} + \cos \dfrac{\theta }{2}}}$ , we get
$\therefore $$\tan y = \dfrac{{2\sin (\dfrac{\pi }{8} + \dfrac{\theta }{4})\cos (\dfrac{\pi }{8} - \dfrac{\theta }{4})}}{{2\cos (\dfrac{\pi }{8} + \dfrac{\theta }{4})\cos (\dfrac{\pi }{8} - \dfrac{\theta }{4})}}$
By simplifying we get , \[\tan y = \dfrac{{\sin (\dfrac{\pi }{8} + \dfrac{\theta }{4})}}{{\cos (\dfrac{\pi }{8} + \dfrac{\theta }{4})}}\] hence we know that $\tan x = \dfrac{{\sin x}}{{\cos x}}$
Hence by substituting the value we get ,
$ \Rightarrow $ $\tan y = \tan (\dfrac{\pi }{8} + \dfrac{\theta }{4})$
$
\Rightarrow y = \dfrac{\pi }{8} + \dfrac{\theta }{4} \\
\Rightarrow 4y = \dfrac{\pi }{2} + \theta \\
$
Hence according to question we have to find $\sin 4y$, so
$\sin 4y = \sin (\dfrac{\pi }{2} + \theta )$
Hence , $(\dfrac{\pi }{2} + \theta )$ lies in second quadrant , where $\sin $ is positive , hence it is equal to $\cos \theta $ and initially we have assumed $\cos \theta $$ = x$.
$\therefore \sin 4y = x$
Note: It is always advisable to remember such basic conversions while involving trigonometric questions as it helps save a lot of time. Trigonometric identity and sign of all trigonometric functions in all the quadrants is required to solve this problem.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

