
If the value of $(1 + \sqrt {1 + x} \tan y = 1 + \sqrt {1 - x} )$, then $\sin 4y$ is equal to
A.4x
B.2x
C.x
D.None of these
Answer
616.2k+ views
Hint: Use basic trigonometric conversions like $\sin C + \sin D = 2\sin (\dfrac{{C + D}}{2})\cos (\dfrac{{C - D}}{2}),\cos C + \cos D = 2\cos (\dfrac{{C + D}}{2})\cos (\dfrac{{C - D}}{2})$ and $\tan x = \dfrac{{\sin x}}{{\cos x}}$. Use this to find the value of $\sin 4y$.
$\tan y = \dfrac{{1 + \sqrt {1 - x} }}{{1 + \sqrt {1 + x} }}$……………..(i)
Complete step-by-step answer:
Let $x = \cos \theta $
$ \Rightarrow $$1 + x = 1 + \cos \theta $
$ = 2{\cos ^2}(\dfrac{\theta }{2})$
$ \Rightarrow \sqrt {1 + x} = \sqrt 2 \cos \dfrac{\theta }{2}$
Similarly ,
$ \Rightarrow 1 - x = 1 - \cos \theta $
$ = 2{\sin ^2}\dfrac{\theta }{2}$
$ \Rightarrow \sqrt {1 - x} = \sqrt 2 \sin \dfrac{\theta }{2}$, Hence substituting the value of $\sqrt {1 - x} $ in equation(i)
We get,
$\tan y = \dfrac{{1 + \sqrt {1 - x} }}{{1 + \sqrt {1 + x} }}$
$
= \dfrac{{1 + \sqrt 2 \sin (\dfrac{\theta }{2})}}{{1 + \sqrt 2 \cos \dfrac{\theta }{2}}} \\
= \dfrac{{\sqrt 2 (\dfrac{1}{{\sqrt 2 }} + \sin (\dfrac{\theta }{2}))}}{{\sqrt 2 (\dfrac{1}{{\sqrt 2 }} + \cos (\dfrac{\theta }{2}))}} \\
$
As we know that $\dfrac{1}{{\sqrt 2 }}$can be written as $\dfrac{\pi }{4}$.
Hence, $\tan y = \dfrac{{\sin \dfrac{\pi }{4} + \sin \dfrac{\theta }{2}}}{{\cos \dfrac{\pi }{4} + \cos \dfrac{\theta }{2}}}$
We know that ,
$
\sin C + \sin D = 2\sin (\dfrac{{C + D}}{2})\cos (\dfrac{{C - D}}{2}) \\
\cos C + \cos D = 2\cos (\dfrac{{C + D}}{2})\cos (\dfrac{{C - D}}{2}) \\
$
Hence substituting the value in $\tan y = \dfrac{{\sin \dfrac{\pi }{4} + \sin \dfrac{\theta }{2}}}{{\cos \dfrac{\pi }{4} + \cos \dfrac{\theta }{2}}}$ , we get
$\therefore $$\tan y = \dfrac{{2\sin (\dfrac{\pi }{8} + \dfrac{\theta }{4})\cos (\dfrac{\pi }{8} - \dfrac{\theta }{4})}}{{2\cos (\dfrac{\pi }{8} + \dfrac{\theta }{4})\cos (\dfrac{\pi }{8} - \dfrac{\theta }{4})}}$
By simplifying we get , \[\tan y = \dfrac{{\sin (\dfrac{\pi }{8} + \dfrac{\theta }{4})}}{{\cos (\dfrac{\pi }{8} + \dfrac{\theta }{4})}}\] hence we know that $\tan x = \dfrac{{\sin x}}{{\cos x}}$
Hence by substituting the value we get ,
$ \Rightarrow $ $\tan y = \tan (\dfrac{\pi }{8} + \dfrac{\theta }{4})$
$
\Rightarrow y = \dfrac{\pi }{8} + \dfrac{\theta }{4} \\
\Rightarrow 4y = \dfrac{\pi }{2} + \theta \\
$
Hence according to question we have to find $\sin 4y$, so
$\sin 4y = \sin (\dfrac{\pi }{2} + \theta )$
Hence , $(\dfrac{\pi }{2} + \theta )$ lies in second quadrant , where $\sin $ is positive , hence it is equal to $\cos \theta $ and initially we have assumed $\cos \theta $$ = x$.
$\therefore \sin 4y = x$
Note: It is always advisable to remember such basic conversions while involving trigonometric questions as it helps save a lot of time. Trigonometric identity and sign of all trigonometric functions in all the quadrants is required to solve this problem.
$\tan y = \dfrac{{1 + \sqrt {1 - x} }}{{1 + \sqrt {1 + x} }}$……………..(i)
Complete step-by-step answer:
Let $x = \cos \theta $
$ \Rightarrow $$1 + x = 1 + \cos \theta $
$ = 2{\cos ^2}(\dfrac{\theta }{2})$
$ \Rightarrow \sqrt {1 + x} = \sqrt 2 \cos \dfrac{\theta }{2}$
Similarly ,
$ \Rightarrow 1 - x = 1 - \cos \theta $
$ = 2{\sin ^2}\dfrac{\theta }{2}$
$ \Rightarrow \sqrt {1 - x} = \sqrt 2 \sin \dfrac{\theta }{2}$, Hence substituting the value of $\sqrt {1 - x} $ in equation(i)
We get,
$\tan y = \dfrac{{1 + \sqrt {1 - x} }}{{1 + \sqrt {1 + x} }}$
$
= \dfrac{{1 + \sqrt 2 \sin (\dfrac{\theta }{2})}}{{1 + \sqrt 2 \cos \dfrac{\theta }{2}}} \\
= \dfrac{{\sqrt 2 (\dfrac{1}{{\sqrt 2 }} + \sin (\dfrac{\theta }{2}))}}{{\sqrt 2 (\dfrac{1}{{\sqrt 2 }} + \cos (\dfrac{\theta }{2}))}} \\
$
As we know that $\dfrac{1}{{\sqrt 2 }}$can be written as $\dfrac{\pi }{4}$.
Hence, $\tan y = \dfrac{{\sin \dfrac{\pi }{4} + \sin \dfrac{\theta }{2}}}{{\cos \dfrac{\pi }{4} + \cos \dfrac{\theta }{2}}}$
We know that ,
$
\sin C + \sin D = 2\sin (\dfrac{{C + D}}{2})\cos (\dfrac{{C - D}}{2}) \\
\cos C + \cos D = 2\cos (\dfrac{{C + D}}{2})\cos (\dfrac{{C - D}}{2}) \\
$
Hence substituting the value in $\tan y = \dfrac{{\sin \dfrac{\pi }{4} + \sin \dfrac{\theta }{2}}}{{\cos \dfrac{\pi }{4} + \cos \dfrac{\theta }{2}}}$ , we get
$\therefore $$\tan y = \dfrac{{2\sin (\dfrac{\pi }{8} + \dfrac{\theta }{4})\cos (\dfrac{\pi }{8} - \dfrac{\theta }{4})}}{{2\cos (\dfrac{\pi }{8} + \dfrac{\theta }{4})\cos (\dfrac{\pi }{8} - \dfrac{\theta }{4})}}$
By simplifying we get , \[\tan y = \dfrac{{\sin (\dfrac{\pi }{8} + \dfrac{\theta }{4})}}{{\cos (\dfrac{\pi }{8} + \dfrac{\theta }{4})}}\] hence we know that $\tan x = \dfrac{{\sin x}}{{\cos x}}$
Hence by substituting the value we get ,
$ \Rightarrow $ $\tan y = \tan (\dfrac{\pi }{8} + \dfrac{\theta }{4})$
$
\Rightarrow y = \dfrac{\pi }{8} + \dfrac{\theta }{4} \\
\Rightarrow 4y = \dfrac{\pi }{2} + \theta \\
$
Hence according to question we have to find $\sin 4y$, so
$\sin 4y = \sin (\dfrac{\pi }{2} + \theta )$
Hence , $(\dfrac{\pi }{2} + \theta )$ lies in second quadrant , where $\sin $ is positive , hence it is equal to $\cos \theta $ and initially we have assumed $\cos \theta $$ = x$.
$\therefore \sin 4y = x$
Note: It is always advisable to remember such basic conversions while involving trigonometric questions as it helps save a lot of time. Trigonometric identity and sign of all trigonometric functions in all the quadrants is required to solve this problem.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

