
If the value of $(1 + \sqrt {1 + x} \tan y = 1 + \sqrt {1 - x} )$, then $\sin 4y$ is equal to
A.4x
B.2x
C.x
D.None of these
Answer
518.7k+ views
Hint: Use basic trigonometric conversions like $\sin C + \sin D = 2\sin (\dfrac{{C + D}}{2})\cos (\dfrac{{C - D}}{2}),\cos C + \cos D = 2\cos (\dfrac{{C + D}}{2})\cos (\dfrac{{C - D}}{2})$ and $\tan x = \dfrac{{\sin x}}{{\cos x}}$. Use this to find the value of $\sin 4y$.
$\tan y = \dfrac{{1 + \sqrt {1 - x} }}{{1 + \sqrt {1 + x} }}$……………..(i)
Complete step-by-step answer:
Let $x = \cos \theta $
$ \Rightarrow $$1 + x = 1 + \cos \theta $
$ = 2{\cos ^2}(\dfrac{\theta }{2})$
$ \Rightarrow \sqrt {1 + x} = \sqrt 2 \cos \dfrac{\theta }{2}$
Similarly ,
$ \Rightarrow 1 - x = 1 - \cos \theta $
$ = 2{\sin ^2}\dfrac{\theta }{2}$
$ \Rightarrow \sqrt {1 - x} = \sqrt 2 \sin \dfrac{\theta }{2}$, Hence substituting the value of $\sqrt {1 - x} $ in equation(i)
We get,
$\tan y = \dfrac{{1 + \sqrt {1 - x} }}{{1 + \sqrt {1 + x} }}$
$
= \dfrac{{1 + \sqrt 2 \sin (\dfrac{\theta }{2})}}{{1 + \sqrt 2 \cos \dfrac{\theta }{2}}} \\
= \dfrac{{\sqrt 2 (\dfrac{1}{{\sqrt 2 }} + \sin (\dfrac{\theta }{2}))}}{{\sqrt 2 (\dfrac{1}{{\sqrt 2 }} + \cos (\dfrac{\theta }{2}))}} \\
$
As we know that $\dfrac{1}{{\sqrt 2 }}$can be written as $\dfrac{\pi }{4}$.
Hence, $\tan y = \dfrac{{\sin \dfrac{\pi }{4} + \sin \dfrac{\theta }{2}}}{{\cos \dfrac{\pi }{4} + \cos \dfrac{\theta }{2}}}$
We know that ,
$
\sin C + \sin D = 2\sin (\dfrac{{C + D}}{2})\cos (\dfrac{{C - D}}{2}) \\
\cos C + \cos D = 2\cos (\dfrac{{C + D}}{2})\cos (\dfrac{{C - D}}{2}) \\
$
Hence substituting the value in $\tan y = \dfrac{{\sin \dfrac{\pi }{4} + \sin \dfrac{\theta }{2}}}{{\cos \dfrac{\pi }{4} + \cos \dfrac{\theta }{2}}}$ , we get
$\therefore $$\tan y = \dfrac{{2\sin (\dfrac{\pi }{8} + \dfrac{\theta }{4})\cos (\dfrac{\pi }{8} - \dfrac{\theta }{4})}}{{2\cos (\dfrac{\pi }{8} + \dfrac{\theta }{4})\cos (\dfrac{\pi }{8} - \dfrac{\theta }{4})}}$
By simplifying we get , \[\tan y = \dfrac{{\sin (\dfrac{\pi }{8} + \dfrac{\theta }{4})}}{{\cos (\dfrac{\pi }{8} + \dfrac{\theta }{4})}}\] hence we know that $\tan x = \dfrac{{\sin x}}{{\cos x}}$
Hence by substituting the value we get ,
$ \Rightarrow $ $\tan y = \tan (\dfrac{\pi }{8} + \dfrac{\theta }{4})$
$
\Rightarrow y = \dfrac{\pi }{8} + \dfrac{\theta }{4} \\
\Rightarrow 4y = \dfrac{\pi }{2} + \theta \\
$
Hence according to question we have to find $\sin 4y$, so
$\sin 4y = \sin (\dfrac{\pi }{2} + \theta )$
Hence , $(\dfrac{\pi }{2} + \theta )$ lies in second quadrant , where $\sin $ is positive , hence it is equal to $\cos \theta $ and initially we have assumed $\cos \theta $$ = x$.
$\therefore \sin 4y = x$
Note: It is always advisable to remember such basic conversions while involving trigonometric questions as it helps save a lot of time. Trigonometric identity and sign of all trigonometric functions in all the quadrants is required to solve this problem.
$\tan y = \dfrac{{1 + \sqrt {1 - x} }}{{1 + \sqrt {1 + x} }}$……………..(i)
Complete step-by-step answer:
Let $x = \cos \theta $
$ \Rightarrow $$1 + x = 1 + \cos \theta $
$ = 2{\cos ^2}(\dfrac{\theta }{2})$
$ \Rightarrow \sqrt {1 + x} = \sqrt 2 \cos \dfrac{\theta }{2}$
Similarly ,
$ \Rightarrow 1 - x = 1 - \cos \theta $
$ = 2{\sin ^2}\dfrac{\theta }{2}$
$ \Rightarrow \sqrt {1 - x} = \sqrt 2 \sin \dfrac{\theta }{2}$, Hence substituting the value of $\sqrt {1 - x} $ in equation(i)
We get,
$\tan y = \dfrac{{1 + \sqrt {1 - x} }}{{1 + \sqrt {1 + x} }}$
$
= \dfrac{{1 + \sqrt 2 \sin (\dfrac{\theta }{2})}}{{1 + \sqrt 2 \cos \dfrac{\theta }{2}}} \\
= \dfrac{{\sqrt 2 (\dfrac{1}{{\sqrt 2 }} + \sin (\dfrac{\theta }{2}))}}{{\sqrt 2 (\dfrac{1}{{\sqrt 2 }} + \cos (\dfrac{\theta }{2}))}} \\
$
As we know that $\dfrac{1}{{\sqrt 2 }}$can be written as $\dfrac{\pi }{4}$.
Hence, $\tan y = \dfrac{{\sin \dfrac{\pi }{4} + \sin \dfrac{\theta }{2}}}{{\cos \dfrac{\pi }{4} + \cos \dfrac{\theta }{2}}}$
We know that ,
$
\sin C + \sin D = 2\sin (\dfrac{{C + D}}{2})\cos (\dfrac{{C - D}}{2}) \\
\cos C + \cos D = 2\cos (\dfrac{{C + D}}{2})\cos (\dfrac{{C - D}}{2}) \\
$
Hence substituting the value in $\tan y = \dfrac{{\sin \dfrac{\pi }{4} + \sin \dfrac{\theta }{2}}}{{\cos \dfrac{\pi }{4} + \cos \dfrac{\theta }{2}}}$ , we get
$\therefore $$\tan y = \dfrac{{2\sin (\dfrac{\pi }{8} + \dfrac{\theta }{4})\cos (\dfrac{\pi }{8} - \dfrac{\theta }{4})}}{{2\cos (\dfrac{\pi }{8} + \dfrac{\theta }{4})\cos (\dfrac{\pi }{8} - \dfrac{\theta }{4})}}$
By simplifying we get , \[\tan y = \dfrac{{\sin (\dfrac{\pi }{8} + \dfrac{\theta }{4})}}{{\cos (\dfrac{\pi }{8} + \dfrac{\theta }{4})}}\] hence we know that $\tan x = \dfrac{{\sin x}}{{\cos x}}$
Hence by substituting the value we get ,
$ \Rightarrow $ $\tan y = \tan (\dfrac{\pi }{8} + \dfrac{\theta }{4})$
$
\Rightarrow y = \dfrac{\pi }{8} + \dfrac{\theta }{4} \\
\Rightarrow 4y = \dfrac{\pi }{2} + \theta \\
$
Hence according to question we have to find $\sin 4y$, so
$\sin 4y = \sin (\dfrac{\pi }{2} + \theta )$
Hence , $(\dfrac{\pi }{2} + \theta )$ lies in second quadrant , where $\sin $ is positive , hence it is equal to $\cos \theta $ and initially we have assumed $\cos \theta $$ = x$.
$\therefore \sin 4y = x$
Note: It is always advisable to remember such basic conversions while involving trigonometric questions as it helps save a lot of time. Trigonometric identity and sign of all trigonometric functions in all the quadrants is required to solve this problem.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Trending doubts
Is Cellular respiration an Oxidation or Reduction class 11 chemistry CBSE

In electron dot structure the valence shell electrons class 11 chemistry CBSE

What is the Pitti Island famous for ABird Sanctuary class 11 social science CBSE

State the laws of reflection of light

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE
