
If the \[\underset{x\to 0}{\mathop{\lim }}\,\dfrac{1}{{{x}^{3}}}\left( \dfrac{1}{\sqrt{1+x}}-\dfrac{1+ax}{1+bx} \right)\] exists and has the value equal to l, then find the value of \[\dfrac{1}{a}-\dfrac{2}{l}+\dfrac{3}{b}\].
Answer
589.5k+ views
Hint: Expand \[{{\left( 1+x \right)}^{\dfrac{1}{2}}}\] by using the binomial expansion of any series of any index. Use the condition given that limit exists and finite to find a, b, and l.
Complete step by step answer:
We have an expression \[\underset{x\to 0}{\mathop{\lim }}\,\dfrac{1}{{{x}^{3}}}\left( \dfrac{1}{\sqrt{1+x}}-\dfrac{1+ax}{1+bx} \right)\] which exists and has a value equal to l, then we need to determine \[\dfrac{1}{a}-\dfrac{2}{l}+\dfrac{3}{b}=?\]
We have,
\[l=\underset{x\to 0}{\mathop{\lim }}\,\dfrac{1}{{{x}^{3}}}\left( \dfrac{1}{\sqrt{1+x}}-\dfrac{1+ax}{1+bx} \right)....\left( i \right)\]
Let us directly put the limits to the expression given, we get
\[l=\dfrac{1}{0}\left( \dfrac{1}{\sqrt{1+0}}-\dfrac{1+0}{1+0} \right)\]
\[l=\dfrac{1}{0}\left( 1-1 \right)=\dfrac{0}{0}\]
Hence, the given limit expression is in indeterminate form. Hence, we need to simplify the given relation before proceeding for putting limits.
Let us simplify the term \[\dfrac{1}{\sqrt{1+x}}\] by rationalizing it. Multiply by \[\sqrt{1+x}\] to numerator and denominator to \[\dfrac{1}{\sqrt{1+x}}\] in expression, we get,
\[l=\underset{x\to 0}{\mathop{\lim }}\,\dfrac{1}{{{x}^{3}}}\left( \dfrac{1}{\sqrt{1+x}}\times \dfrac{\sqrt{1+x}}{\sqrt{1+x}}-\dfrac{1+ax}{1+bx} \right)\]
\[l=\underset{x\to 0}{\mathop{\lim }}\,\dfrac{1}{{{x}^{3}}}\left( \dfrac{\sqrt{1+x}}{1+x}-\dfrac{\left( 1+ax \right)}{1+bx} \right)\]
We can write the expression as:
\[l=\underset{x\to 0}{\mathop{\lim }}\,\dfrac{\left( 1+bx \right)\sqrt{1+x}-\left( 1+ax \right)\left( 1+x \right)}{{{x}^{3}}\left( 1+x \right)\left( 1+bx \right)}\]
\[l=\underset{x\to 0}{\mathop{\lim }}\,\dfrac{\left( 1+bx \right){{\left( 1+x \right)}^{\dfrac{1}{2}}}-\left( 1+ax+x+a{{x}^{2}} \right)}{{{x}^{3}}\left( 1+bx+x+b{{x}^{2}} \right)}\]
\[l=\underset{x\to 0}{\mathop{\lim }}\,\dfrac{\left( 1+bx \right){{\left( 1+x \right)}^{\dfrac{1}{2}}}-\left( 1+ax+x+a{{x}^{2}} \right)}{{{x}^{3}}+b{{x}^{4}}+{{x}^{4}}+b{{x}^{5}}}....\left( ii \right)\]
We know the expansion of \[{{\left( 1+x \right)}^{n}}\] for any index n can be given as
\[{{\left( 1+x \right)}^{n}}=1+nx+\dfrac{n\left( n-1 \right)}{2!}{{x}^{2}}+\dfrac{n\left( n-1 \right)\left( n-2 \right)}{3!}{{x}^{3}}+....\left( iii \right)\]
We can expand \[{{\left( 1+x \right)}^{\dfrac{1}{2}}}\] by using the above relation, we will get
\[{{\left( 1+x \right)}^{\dfrac{1}{2}}}=1+\dfrac{1}{2}x+\dfrac{\left( \dfrac{1}{2} \right)\left( \dfrac{1}{2}-1 \right)}{2!}{{x}^{2}}+\dfrac{\left( \dfrac{1}{2} \right)\left( \dfrac{1}{2}-1 \right)\left( \dfrac{1}{2}-2 \right)}{3!}{{x}^{3}}+.....\]
Or,
\[{{\left( 1+x \right)}^{\dfrac{1}{2}}}=1+\dfrac{x}{2}-\dfrac{1}{8}{{x}^{2}}+\dfrac{1}{16}{{x}^{3}}+.....\left( iv \right)\]
Putting the value of \[{{\left( 1+x \right)}^{\dfrac{1}{2}}}\] as expression in equation (iv) in equation (ii), we get
\[l=\underset{x\to 0}{\mathop{\lim }}\,\dfrac{\left( 1+bx \right)\left( 1+\dfrac{x}{2}-\dfrac{{{x}^{2}}}{8}+\dfrac{{{x}^{3}}}{16}+.... \right)-\left( 1+ax+x+a{{x}^{2}} \right)}{{{x}^{3}}+b{{x}^{4}}+{{x}^{4}}+{{x}^{5}}}\]
On simplifying the above relation, we get
\[l=\underset{x\to 0}{\mathop{\lim }}\,\dfrac{\left( 1+\dfrac{x}{2}-\dfrac{{{x}^{2}}}{8}+\dfrac{{{x}^{3}}}{16} \right)+\left( bx+\dfrac{b{{x}^{2}}}{2}-\dfrac{b{{x}^{3}}}{8}+\dfrac{b{{x}^{4}}}{16} \right)-\left( 1+ax+x+a{{x}^{2}} \right)}{{{x}^{3}}+b{{x}^{4}}+{{x}^{4}}+{{x}^{5}}}\]
Taking the same coefficients in one bracket, we get
\[l=\underset{x\to 0}{\mathop{\lim }}\,\dfrac{x\left( \dfrac{1}{2}+b-a-1 \right)+{{x}^{2}}\left( \dfrac{-1}{8}+\dfrac{b}{2}-a \right)+{{x}^{3}}\left( \dfrac{1}{16}-\dfrac{b}{8} \right)+\dfrac{b{{x}^{4}}}{16}}{{{x}^{3}}+b{{x}^{4}}+{{x}^{4}}+{{x}^{5}}}\]
Taking out x from numerator and denominator, we get
\[l=\underset{x\to 0}{\mathop{\lim }}\,\dfrac{\left( b-a-\dfrac{1}{2} \right)+x\left( -\dfrac{1}{8}+\dfrac{b}{2}-a \right)+{{x}^{2}}\left( \dfrac{1}{16}-\dfrac{b}{8} \right)+\dfrac{b{{x}^{3}}}{16}}{{{x}^{2}}+b{{x}^{3}}+{{x}^{3}}+{{x}^{4}}}\]
Dividing the whole equation by \[{{x}^{2}}\], we get
\[l=\underset{x\to 0}{\mathop{\lim }}\,\dfrac{\dfrac{\left( b-a-\dfrac{1}{2} \right)}{{{x}^{2}}}+\dfrac{\left( \dfrac{-1}{8}+\dfrac{b}{2}-a \right)}{x}+\left( \dfrac{1}{16}-\dfrac{b}{8} \right)+\dfrac{xb}{16}}{1+bx+x+{{x}^{2}}}....\left( v \right)\]
Now, if we put a limit \[x\to 0\] to the given expression, we get positive infinity or negative infinity if \[\left( b-a-\dfrac{1}{2} \right)\] and \[\left( \dfrac{-1}{8}+\dfrac{b}{2}-a \right)\] will be any definite value except 0. But it is given that ‘l’ is a finite value of a given limit. Hence, \[\left( b-a-\dfrac{1}{2} \right)\] and \[\left( \dfrac{-1}{8}+\dfrac{b}{2}-a \right)\] should be zero and hence ‘l’ can be written as
\[l=\dfrac{\left( \dfrac{1}{16}-\dfrac{b}{8} \right)+0}{1+0}\]
\[l=\dfrac{1}{16}-\dfrac{b}{8}....\left( vi \right)\]
And,
\[b-a-\dfrac{1}{2}=0....\left( vii \right)\]
\[\dfrac{-1}{8}+\dfrac{b}{2}-a=0....\left( viii \right)\]
Let us solve the equation (vii) and (viii) to get values of ‘a’ and ‘b’.
From equation (vii), we have
\[a=b-\dfrac{1}{2}\]
Putting the value of ‘a’ in equation (viii),
We get,
\[\dfrac{-1}{8}+\dfrac{b}{2}-\left( b-\dfrac{1}{2} \right)=0\]
\[\dfrac{-1}{8}+\dfrac{b}{2}-b+\dfrac{1}{2}=0\]
\[\dfrac{-b}{2}=\dfrac{-1}{2}+\dfrac{1}{8}=\dfrac{-4+1}{8}=\dfrac{-3}{8}\]
\[b=\dfrac{3}{4}\]
And hence, \[a=\dfrac{3}{4}-\dfrac{1}{2}=\dfrac{3-2}{4}=\dfrac{1}{4}\]
\[a=\dfrac{1}{4}\]
Now, we can calculate ‘l’ by equation (vi), as
\[l=\dfrac{1}{16}-\dfrac{3}{32}=\dfrac{2-3}{32}\]
\[l=\dfrac{-1}{32}\]
Hence, now we have
\[a=\dfrac{1}{4},b=\dfrac{3}{4}\] and \[l=\dfrac{-1}{32}....\left( ix \right)\]
Now coming to question, we have to find \[\dfrac{1}{a}-\dfrac{2}{l}+\dfrac{3}{b}=?\]
Putting values of a, l, b from equation (ix), we get
\[4+64+4=72\]
So, the correct answer is “72”.
Note: Another approach for this question would be that one can apply L’Hospital Rule to the given expression as
\[l=\underset{x\to 0}{\mathop{\lim }}\,\dfrac{\left( 1+bx \right)-\left( 1+ax \right)\sqrt{1+x}}{{{x}^{3}}\left( 1+bx \right)\sqrt{1+x}}\]
Differentiating numerator and denominator with respect to x, we get
\[l=\underset{x\to 0}{\mathop{\lim }}\,\dfrac{b-\left( a\sqrt{1+x}+\dfrac{\left( 1+ax \right)}{2}{{\left( 1+x \right)}^{\dfrac{1}{2}}} \right)}{\left( 3{{x}^{2}}+4b{{x}^{3}} \right)\sqrt{1+x}+\dfrac{{{x}^{3}}+b{{x}^{4}}}{2}{{\left( 1+x \right)}^{\dfrac{-1}{2}}}}\]
On simplifying the given relation, we get
\[l=\underset{x\to 0}{\mathop{\lim }}\,\dfrac{2b\sqrt{1+x}-\left( 2a+3ax+1 \right)}{2\left( 1+x \right)\left( 3{{x}^{2}}+4b{{x}^{3}} \right)+\left( {{x}^{3}}+b{{x}^{4}} \right)}\]
Now, putting \[x\to 0\], we get
\[l=\dfrac{2b-\left( 2a+1 \right)}{0}\]
As l is finite, hence 2b – 2a – 1 = 0.
And we need to apply to L'Hospital to ‘l’ again. Now, we get
\[l=\underset{x\to 0}{\mathop{\lim }}\,\dfrac{\dfrac{2b}{2}\dfrac{1}{\sqrt{1+x}}-3a}{2\left( 3{{x}^{2}}+4b{{x}^{3}} \right)+2\left( 1+x \right)\left( 6x+12b{{x}^{2}} \right)+3{{x}^{2}}+4b{{x}^{3}}}\]
Now, putting \[x\to 0\], we get
\[l=\dfrac{b-3a}{0}\]
As l is finite, hence b – 3a = 0 or b = 3a.
Now, calculate a and b by using the above both equations and apply L’Hospital Rule again to ‘l’ to get the value of the limit. The calculation is the most important part of the question as well. So, we need to take care of the calculation as well. One can think that why higher powers of x are ignored in the solution. The reason is simple for it that limit to higher powers of x will be zero, i.e. if \[{{x}^{3}}\] is tending to zero, then why we write \[{{x}^{4}}\] or any other high power.
Complete step by step answer:
We have an expression \[\underset{x\to 0}{\mathop{\lim }}\,\dfrac{1}{{{x}^{3}}}\left( \dfrac{1}{\sqrt{1+x}}-\dfrac{1+ax}{1+bx} \right)\] which exists and has a value equal to l, then we need to determine \[\dfrac{1}{a}-\dfrac{2}{l}+\dfrac{3}{b}=?\]
We have,
\[l=\underset{x\to 0}{\mathop{\lim }}\,\dfrac{1}{{{x}^{3}}}\left( \dfrac{1}{\sqrt{1+x}}-\dfrac{1+ax}{1+bx} \right)....\left( i \right)\]
Let us directly put the limits to the expression given, we get
\[l=\dfrac{1}{0}\left( \dfrac{1}{\sqrt{1+0}}-\dfrac{1+0}{1+0} \right)\]
\[l=\dfrac{1}{0}\left( 1-1 \right)=\dfrac{0}{0}\]
Hence, the given limit expression is in indeterminate form. Hence, we need to simplify the given relation before proceeding for putting limits.
Let us simplify the term \[\dfrac{1}{\sqrt{1+x}}\] by rationalizing it. Multiply by \[\sqrt{1+x}\] to numerator and denominator to \[\dfrac{1}{\sqrt{1+x}}\] in expression, we get,
\[l=\underset{x\to 0}{\mathop{\lim }}\,\dfrac{1}{{{x}^{3}}}\left( \dfrac{1}{\sqrt{1+x}}\times \dfrac{\sqrt{1+x}}{\sqrt{1+x}}-\dfrac{1+ax}{1+bx} \right)\]
\[l=\underset{x\to 0}{\mathop{\lim }}\,\dfrac{1}{{{x}^{3}}}\left( \dfrac{\sqrt{1+x}}{1+x}-\dfrac{\left( 1+ax \right)}{1+bx} \right)\]
We can write the expression as:
\[l=\underset{x\to 0}{\mathop{\lim }}\,\dfrac{\left( 1+bx \right)\sqrt{1+x}-\left( 1+ax \right)\left( 1+x \right)}{{{x}^{3}}\left( 1+x \right)\left( 1+bx \right)}\]
\[l=\underset{x\to 0}{\mathop{\lim }}\,\dfrac{\left( 1+bx \right){{\left( 1+x \right)}^{\dfrac{1}{2}}}-\left( 1+ax+x+a{{x}^{2}} \right)}{{{x}^{3}}\left( 1+bx+x+b{{x}^{2}} \right)}\]
\[l=\underset{x\to 0}{\mathop{\lim }}\,\dfrac{\left( 1+bx \right){{\left( 1+x \right)}^{\dfrac{1}{2}}}-\left( 1+ax+x+a{{x}^{2}} \right)}{{{x}^{3}}+b{{x}^{4}}+{{x}^{4}}+b{{x}^{5}}}....\left( ii \right)\]
We know the expansion of \[{{\left( 1+x \right)}^{n}}\] for any index n can be given as
\[{{\left( 1+x \right)}^{n}}=1+nx+\dfrac{n\left( n-1 \right)}{2!}{{x}^{2}}+\dfrac{n\left( n-1 \right)\left( n-2 \right)}{3!}{{x}^{3}}+....\left( iii \right)\]
We can expand \[{{\left( 1+x \right)}^{\dfrac{1}{2}}}\] by using the above relation, we will get
\[{{\left( 1+x \right)}^{\dfrac{1}{2}}}=1+\dfrac{1}{2}x+\dfrac{\left( \dfrac{1}{2} \right)\left( \dfrac{1}{2}-1 \right)}{2!}{{x}^{2}}+\dfrac{\left( \dfrac{1}{2} \right)\left( \dfrac{1}{2}-1 \right)\left( \dfrac{1}{2}-2 \right)}{3!}{{x}^{3}}+.....\]
Or,
\[{{\left( 1+x \right)}^{\dfrac{1}{2}}}=1+\dfrac{x}{2}-\dfrac{1}{8}{{x}^{2}}+\dfrac{1}{16}{{x}^{3}}+.....\left( iv \right)\]
Putting the value of \[{{\left( 1+x \right)}^{\dfrac{1}{2}}}\] as expression in equation (iv) in equation (ii), we get
\[l=\underset{x\to 0}{\mathop{\lim }}\,\dfrac{\left( 1+bx \right)\left( 1+\dfrac{x}{2}-\dfrac{{{x}^{2}}}{8}+\dfrac{{{x}^{3}}}{16}+.... \right)-\left( 1+ax+x+a{{x}^{2}} \right)}{{{x}^{3}}+b{{x}^{4}}+{{x}^{4}}+{{x}^{5}}}\]
On simplifying the above relation, we get
\[l=\underset{x\to 0}{\mathop{\lim }}\,\dfrac{\left( 1+\dfrac{x}{2}-\dfrac{{{x}^{2}}}{8}+\dfrac{{{x}^{3}}}{16} \right)+\left( bx+\dfrac{b{{x}^{2}}}{2}-\dfrac{b{{x}^{3}}}{8}+\dfrac{b{{x}^{4}}}{16} \right)-\left( 1+ax+x+a{{x}^{2}} \right)}{{{x}^{3}}+b{{x}^{4}}+{{x}^{4}}+{{x}^{5}}}\]
Taking the same coefficients in one bracket, we get
\[l=\underset{x\to 0}{\mathop{\lim }}\,\dfrac{x\left( \dfrac{1}{2}+b-a-1 \right)+{{x}^{2}}\left( \dfrac{-1}{8}+\dfrac{b}{2}-a \right)+{{x}^{3}}\left( \dfrac{1}{16}-\dfrac{b}{8} \right)+\dfrac{b{{x}^{4}}}{16}}{{{x}^{3}}+b{{x}^{4}}+{{x}^{4}}+{{x}^{5}}}\]
Taking out x from numerator and denominator, we get
\[l=\underset{x\to 0}{\mathop{\lim }}\,\dfrac{\left( b-a-\dfrac{1}{2} \right)+x\left( -\dfrac{1}{8}+\dfrac{b}{2}-a \right)+{{x}^{2}}\left( \dfrac{1}{16}-\dfrac{b}{8} \right)+\dfrac{b{{x}^{3}}}{16}}{{{x}^{2}}+b{{x}^{3}}+{{x}^{3}}+{{x}^{4}}}\]
Dividing the whole equation by \[{{x}^{2}}\], we get
\[l=\underset{x\to 0}{\mathop{\lim }}\,\dfrac{\dfrac{\left( b-a-\dfrac{1}{2} \right)}{{{x}^{2}}}+\dfrac{\left( \dfrac{-1}{8}+\dfrac{b}{2}-a \right)}{x}+\left( \dfrac{1}{16}-\dfrac{b}{8} \right)+\dfrac{xb}{16}}{1+bx+x+{{x}^{2}}}....\left( v \right)\]
Now, if we put a limit \[x\to 0\] to the given expression, we get positive infinity or negative infinity if \[\left( b-a-\dfrac{1}{2} \right)\] and \[\left( \dfrac{-1}{8}+\dfrac{b}{2}-a \right)\] will be any definite value except 0. But it is given that ‘l’ is a finite value of a given limit. Hence, \[\left( b-a-\dfrac{1}{2} \right)\] and \[\left( \dfrac{-1}{8}+\dfrac{b}{2}-a \right)\] should be zero and hence ‘l’ can be written as
\[l=\dfrac{\left( \dfrac{1}{16}-\dfrac{b}{8} \right)+0}{1+0}\]
\[l=\dfrac{1}{16}-\dfrac{b}{8}....\left( vi \right)\]
And,
\[b-a-\dfrac{1}{2}=0....\left( vii \right)\]
\[\dfrac{-1}{8}+\dfrac{b}{2}-a=0....\left( viii \right)\]
Let us solve the equation (vii) and (viii) to get values of ‘a’ and ‘b’.
From equation (vii), we have
\[a=b-\dfrac{1}{2}\]
Putting the value of ‘a’ in equation (viii),
We get,
\[\dfrac{-1}{8}+\dfrac{b}{2}-\left( b-\dfrac{1}{2} \right)=0\]
\[\dfrac{-1}{8}+\dfrac{b}{2}-b+\dfrac{1}{2}=0\]
\[\dfrac{-b}{2}=\dfrac{-1}{2}+\dfrac{1}{8}=\dfrac{-4+1}{8}=\dfrac{-3}{8}\]
\[b=\dfrac{3}{4}\]
And hence, \[a=\dfrac{3}{4}-\dfrac{1}{2}=\dfrac{3-2}{4}=\dfrac{1}{4}\]
\[a=\dfrac{1}{4}\]
Now, we can calculate ‘l’ by equation (vi), as
\[l=\dfrac{1}{16}-\dfrac{3}{32}=\dfrac{2-3}{32}\]
\[l=\dfrac{-1}{32}\]
Hence, now we have
\[a=\dfrac{1}{4},b=\dfrac{3}{4}\] and \[l=\dfrac{-1}{32}....\left( ix \right)\]
Now coming to question, we have to find \[\dfrac{1}{a}-\dfrac{2}{l}+\dfrac{3}{b}=?\]
Putting values of a, l, b from equation (ix), we get
\[4+64+4=72\]
So, the correct answer is “72”.
Note: Another approach for this question would be that one can apply L’Hospital Rule to the given expression as
\[l=\underset{x\to 0}{\mathop{\lim }}\,\dfrac{\left( 1+bx \right)-\left( 1+ax \right)\sqrt{1+x}}{{{x}^{3}}\left( 1+bx \right)\sqrt{1+x}}\]
Differentiating numerator and denominator with respect to x, we get
\[l=\underset{x\to 0}{\mathop{\lim }}\,\dfrac{b-\left( a\sqrt{1+x}+\dfrac{\left( 1+ax \right)}{2}{{\left( 1+x \right)}^{\dfrac{1}{2}}} \right)}{\left( 3{{x}^{2}}+4b{{x}^{3}} \right)\sqrt{1+x}+\dfrac{{{x}^{3}}+b{{x}^{4}}}{2}{{\left( 1+x \right)}^{\dfrac{-1}{2}}}}\]
On simplifying the given relation, we get
\[l=\underset{x\to 0}{\mathop{\lim }}\,\dfrac{2b\sqrt{1+x}-\left( 2a+3ax+1 \right)}{2\left( 1+x \right)\left( 3{{x}^{2}}+4b{{x}^{3}} \right)+\left( {{x}^{3}}+b{{x}^{4}} \right)}\]
Now, putting \[x\to 0\], we get
\[l=\dfrac{2b-\left( 2a+1 \right)}{0}\]
As l is finite, hence 2b – 2a – 1 = 0.
And we need to apply to L'Hospital to ‘l’ again. Now, we get
\[l=\underset{x\to 0}{\mathop{\lim }}\,\dfrac{\dfrac{2b}{2}\dfrac{1}{\sqrt{1+x}}-3a}{2\left( 3{{x}^{2}}+4b{{x}^{3}} \right)+2\left( 1+x \right)\left( 6x+12b{{x}^{2}} \right)+3{{x}^{2}}+4b{{x}^{3}}}\]
Now, putting \[x\to 0\], we get
\[l=\dfrac{b-3a}{0}\]
As l is finite, hence b – 3a = 0 or b = 3a.
Now, calculate a and b by using the above both equations and apply L’Hospital Rule again to ‘l’ to get the value of the limit. The calculation is the most important part of the question as well. So, we need to take care of the calculation as well. One can think that why higher powers of x are ignored in the solution. The reason is simple for it that limit to higher powers of x will be zero, i.e. if \[{{x}^{3}}\] is tending to zero, then why we write \[{{x}^{4}}\] or any other high power.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

