
If the terms $a\left( \dfrac{1}{b}+\dfrac{1}{c} \right)$, $b\left( \dfrac{1}{c}+\dfrac{1}{a} \right)$, $c\left( \dfrac{1}{a}+\dfrac{1}{b} \right)$ are in A.P. Prove that a, b, c are in A.P.
Answer
515.4k+ views
Hint: We first try to find if the conditions for the terms $a\left( \dfrac{1}{b}+\dfrac{1}{c} \right)$, $b\left( \dfrac{1}{c}+\dfrac{1}{a} \right)$, $c\left( \dfrac{1}{a}+\dfrac{1}{b} \right)$ satisfy. For $x,y,z$ are in A.P, we can say that $z-y=y-x$. We also can prove that part with the use of binary operations for $a\left( \dfrac{1}{b}+\dfrac{1}{c} \right)$, $b\left( \dfrac{1}{c}+\dfrac{1}{a} \right)$, $c\left( \dfrac{1}{a}+\dfrac{1}{b} \right)$.
Complete step-by-step solution:
The terms $a\left( \dfrac{1}{b}+\dfrac{1}{c} \right)$, $b\left( \dfrac{1}{c}+\dfrac{1}{a} \right)$, $c\left( \dfrac{1}{a}+\dfrac{1}{b} \right)$ are in A.P.
If the terms $x,y,z$ are in A.P. then we can say that $z-y=y-x$.
Therefore, $c\left( \dfrac{1}{a}+\dfrac{1}{b} \right)-b\left( \dfrac{1}{c}+\dfrac{1}{a} \right)=b\left( \dfrac{1}{c}+\dfrac{1}{a} \right)-a\left( \dfrac{1}{b}+\dfrac{1}{c} \right)$.
We now simplify the equation to get
$\begin{align}
& c\left( \dfrac{1}{a}+\dfrac{1}{b} \right)-b\left( \dfrac{1}{c}+\dfrac{1}{a} \right)=b\left( \dfrac{1}{c}+\dfrac{1}{a} \right)-a\left( \dfrac{1}{b}+\dfrac{1}{c} \right) \\
& \Rightarrow \dfrac{c}{a}+\dfrac{c}{b}-\dfrac{b}{c}-\dfrac{b}{a}=\dfrac{b}{c}+\dfrac{b}{a}-\dfrac{a}{b}-\dfrac{a}{c} \\
\end{align}$
Now based on the denominator value we take the common terms out.
$\begin{align}
& \dfrac{c}{a}+\dfrac{c}{b}-\dfrac{b}{c}-\dfrac{b}{a}=\dfrac{b}{c}+\dfrac{b}{a}-\dfrac{a}{b}-\dfrac{a}{c} \\
& \Rightarrow \left( \dfrac{c}{a}-\dfrac{b}{a} \right)+\left( \dfrac{c}{b}-\dfrac{b}{c} \right)=\left( \dfrac{b}{c}-\dfrac{a}{c} \right)+\left( \dfrac{b}{a}-\dfrac{a}{b} \right) \\
\end{align}$
We complete the simplification of the dfractions in the brackets and get
$\begin{align}
& \left( \dfrac{c}{a}-\dfrac{b}{a} \right)+\left( \dfrac{c}{b}-\dfrac{b}{c} \right)=\left( \dfrac{b}{c}-\dfrac{a}{c} \right)+\left( \dfrac{b}{a}-\dfrac{a}{b} \right) \\
& \Rightarrow \left( \dfrac{c-b}{a} \right)+\left( \dfrac{{{c}^{2}}-{{b}^{2}}}{bc} \right)=\left( \dfrac{b-a}{c} \right)+\left( \dfrac{{{b}^{2}}-{{a}^{2}}}{ab} \right) \\
\end{align}$
We now can take common $\left( c-b \right)$ from left side and $\left( b-a \right)$ from right side
$\begin{align}
& \left( \dfrac{c-b}{a} \right)+\left( \dfrac{{{c}^{2}}-{{b}^{2}}}{bc} \right)=\left( \dfrac{b-a}{c} \right)+\left( \dfrac{{{b}^{2}}-{{a}^{2}}}{ab} \right) \\
& \Rightarrow \left( c-b \right)\left[ \dfrac{1}{a}+\dfrac{c+b}{bc} \right]=\left( b-a \right)\left[ \dfrac{1}{c}+\dfrac{b+a}{ab} \right] \\
\end{align}$
We have one common term on both sides as the simplification as we get
\[\left[ \dfrac{1}{a}+\dfrac{c+b}{bc} \right]=\dfrac{bc+ac+ab}{abc}=\left[ \dfrac{1}{c}+\dfrac{b+a}{ab} \right]\]
Therefore, we can omit that from both sides and get $\left( c-b \right)=\left( b-a \right)$ which gives a, b, c are in A.P.
Note: We can also use the simple conditions of A.P. to prove that a, b, c are in A.P.
We know that any binary operation of same number with the A.P. numbers won’t change the conditions of the A.P.
For our given terms $a\left( \dfrac{1}{b}+\dfrac{1}{c} \right)$, $b\left( \dfrac{1}{c}+\dfrac{1}{a} \right)$, $c\left( \dfrac{1}{a}+\dfrac{1}{b} \right)$ are in A.P.
We add 1 to all of the them and they still remain in A.P.
$a\left( \dfrac{1}{b}+\dfrac{1}{c} \right)+1=a\left( \dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c} \right)$, $b\left( \dfrac{1}{c}+\dfrac{1}{a} \right)+1=b\left( \dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c} \right)$, $c\left( \dfrac{1}{a}+\dfrac{1}{b} \right)+1=c\left( \dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c} \right)$ are in A.P.
We now divide with $\left( \dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c} \right)$ and still they remain as A.P.
Therefore, a, b, c are in A.P.
Complete step-by-step solution:
The terms $a\left( \dfrac{1}{b}+\dfrac{1}{c} \right)$, $b\left( \dfrac{1}{c}+\dfrac{1}{a} \right)$, $c\left( \dfrac{1}{a}+\dfrac{1}{b} \right)$ are in A.P.
If the terms $x,y,z$ are in A.P. then we can say that $z-y=y-x$.
Therefore, $c\left( \dfrac{1}{a}+\dfrac{1}{b} \right)-b\left( \dfrac{1}{c}+\dfrac{1}{a} \right)=b\left( \dfrac{1}{c}+\dfrac{1}{a} \right)-a\left( \dfrac{1}{b}+\dfrac{1}{c} \right)$.
We now simplify the equation to get
$\begin{align}
& c\left( \dfrac{1}{a}+\dfrac{1}{b} \right)-b\left( \dfrac{1}{c}+\dfrac{1}{a} \right)=b\left( \dfrac{1}{c}+\dfrac{1}{a} \right)-a\left( \dfrac{1}{b}+\dfrac{1}{c} \right) \\
& \Rightarrow \dfrac{c}{a}+\dfrac{c}{b}-\dfrac{b}{c}-\dfrac{b}{a}=\dfrac{b}{c}+\dfrac{b}{a}-\dfrac{a}{b}-\dfrac{a}{c} \\
\end{align}$
Now based on the denominator value we take the common terms out.
$\begin{align}
& \dfrac{c}{a}+\dfrac{c}{b}-\dfrac{b}{c}-\dfrac{b}{a}=\dfrac{b}{c}+\dfrac{b}{a}-\dfrac{a}{b}-\dfrac{a}{c} \\
& \Rightarrow \left( \dfrac{c}{a}-\dfrac{b}{a} \right)+\left( \dfrac{c}{b}-\dfrac{b}{c} \right)=\left( \dfrac{b}{c}-\dfrac{a}{c} \right)+\left( \dfrac{b}{a}-\dfrac{a}{b} \right) \\
\end{align}$
We complete the simplification of the dfractions in the brackets and get
$\begin{align}
& \left( \dfrac{c}{a}-\dfrac{b}{a} \right)+\left( \dfrac{c}{b}-\dfrac{b}{c} \right)=\left( \dfrac{b}{c}-\dfrac{a}{c} \right)+\left( \dfrac{b}{a}-\dfrac{a}{b} \right) \\
& \Rightarrow \left( \dfrac{c-b}{a} \right)+\left( \dfrac{{{c}^{2}}-{{b}^{2}}}{bc} \right)=\left( \dfrac{b-a}{c} \right)+\left( \dfrac{{{b}^{2}}-{{a}^{2}}}{ab} \right) \\
\end{align}$
We now can take common $\left( c-b \right)$ from left side and $\left( b-a \right)$ from right side
$\begin{align}
& \left( \dfrac{c-b}{a} \right)+\left( \dfrac{{{c}^{2}}-{{b}^{2}}}{bc} \right)=\left( \dfrac{b-a}{c} \right)+\left( \dfrac{{{b}^{2}}-{{a}^{2}}}{ab} \right) \\
& \Rightarrow \left( c-b \right)\left[ \dfrac{1}{a}+\dfrac{c+b}{bc} \right]=\left( b-a \right)\left[ \dfrac{1}{c}+\dfrac{b+a}{ab} \right] \\
\end{align}$
We have one common term on both sides as the simplification as we get
\[\left[ \dfrac{1}{a}+\dfrac{c+b}{bc} \right]=\dfrac{bc+ac+ab}{abc}=\left[ \dfrac{1}{c}+\dfrac{b+a}{ab} \right]\]
Therefore, we can omit that from both sides and get $\left( c-b \right)=\left( b-a \right)$ which gives a, b, c are in A.P.
Note: We can also use the simple conditions of A.P. to prove that a, b, c are in A.P.
We know that any binary operation of same number with the A.P. numbers won’t change the conditions of the A.P.
For our given terms $a\left( \dfrac{1}{b}+\dfrac{1}{c} \right)$, $b\left( \dfrac{1}{c}+\dfrac{1}{a} \right)$, $c\left( \dfrac{1}{a}+\dfrac{1}{b} \right)$ are in A.P.
We add 1 to all of the them and they still remain in A.P.
$a\left( \dfrac{1}{b}+\dfrac{1}{c} \right)+1=a\left( \dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c} \right)$, $b\left( \dfrac{1}{c}+\dfrac{1}{a} \right)+1=b\left( \dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c} \right)$, $c\left( \dfrac{1}{a}+\dfrac{1}{b} \right)+1=c\left( \dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c} \right)$ are in A.P.
We now divide with $\left( \dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c} \right)$ and still they remain as A.P.
Therefore, a, b, c are in A.P.
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

What happens to glucose which enters nephron along class 10 biology CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Which of the following does not have a fundamental class 10 physics CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

