
If the terms $a\left( \dfrac{1}{b}+\dfrac{1}{c} \right)$, $b\left( \dfrac{1}{c}+\dfrac{1}{a} \right)$, $c\left( \dfrac{1}{a}+\dfrac{1}{b} \right)$ are in A.P. Prove that a, b, c are in A.P.
Answer
467.1k+ views
Hint: We first try to find if the conditions for the terms $a\left( \dfrac{1}{b}+\dfrac{1}{c} \right)$, $b\left( \dfrac{1}{c}+\dfrac{1}{a} \right)$, $c\left( \dfrac{1}{a}+\dfrac{1}{b} \right)$ satisfy. For $x,y,z$ are in A.P, we can say that $z-y=y-x$. We also can prove that part with the use of binary operations for $a\left( \dfrac{1}{b}+\dfrac{1}{c} \right)$, $b\left( \dfrac{1}{c}+\dfrac{1}{a} \right)$, $c\left( \dfrac{1}{a}+\dfrac{1}{b} \right)$.
Complete step-by-step solution:
The terms $a\left( \dfrac{1}{b}+\dfrac{1}{c} \right)$, $b\left( \dfrac{1}{c}+\dfrac{1}{a} \right)$, $c\left( \dfrac{1}{a}+\dfrac{1}{b} \right)$ are in A.P.
If the terms $x,y,z$ are in A.P. then we can say that $z-y=y-x$.
Therefore, $c\left( \dfrac{1}{a}+\dfrac{1}{b} \right)-b\left( \dfrac{1}{c}+\dfrac{1}{a} \right)=b\left( \dfrac{1}{c}+\dfrac{1}{a} \right)-a\left( \dfrac{1}{b}+\dfrac{1}{c} \right)$.
We now simplify the equation to get
$\begin{align}
& c\left( \dfrac{1}{a}+\dfrac{1}{b} \right)-b\left( \dfrac{1}{c}+\dfrac{1}{a} \right)=b\left( \dfrac{1}{c}+\dfrac{1}{a} \right)-a\left( \dfrac{1}{b}+\dfrac{1}{c} \right) \\
& \Rightarrow \dfrac{c}{a}+\dfrac{c}{b}-\dfrac{b}{c}-\dfrac{b}{a}=\dfrac{b}{c}+\dfrac{b}{a}-\dfrac{a}{b}-\dfrac{a}{c} \\
\end{align}$
Now based on the denominator value we take the common terms out.
$\begin{align}
& \dfrac{c}{a}+\dfrac{c}{b}-\dfrac{b}{c}-\dfrac{b}{a}=\dfrac{b}{c}+\dfrac{b}{a}-\dfrac{a}{b}-\dfrac{a}{c} \\
& \Rightarrow \left( \dfrac{c}{a}-\dfrac{b}{a} \right)+\left( \dfrac{c}{b}-\dfrac{b}{c} \right)=\left( \dfrac{b}{c}-\dfrac{a}{c} \right)+\left( \dfrac{b}{a}-\dfrac{a}{b} \right) \\
\end{align}$
We complete the simplification of the dfractions in the brackets and get
$\begin{align}
& \left( \dfrac{c}{a}-\dfrac{b}{a} \right)+\left( \dfrac{c}{b}-\dfrac{b}{c} \right)=\left( \dfrac{b}{c}-\dfrac{a}{c} \right)+\left( \dfrac{b}{a}-\dfrac{a}{b} \right) \\
& \Rightarrow \left( \dfrac{c-b}{a} \right)+\left( \dfrac{{{c}^{2}}-{{b}^{2}}}{bc} \right)=\left( \dfrac{b-a}{c} \right)+\left( \dfrac{{{b}^{2}}-{{a}^{2}}}{ab} \right) \\
\end{align}$
We now can take common $\left( c-b \right)$ from left side and $\left( b-a \right)$ from right side
$\begin{align}
& \left( \dfrac{c-b}{a} \right)+\left( \dfrac{{{c}^{2}}-{{b}^{2}}}{bc} \right)=\left( \dfrac{b-a}{c} \right)+\left( \dfrac{{{b}^{2}}-{{a}^{2}}}{ab} \right) \\
& \Rightarrow \left( c-b \right)\left[ \dfrac{1}{a}+\dfrac{c+b}{bc} \right]=\left( b-a \right)\left[ \dfrac{1}{c}+\dfrac{b+a}{ab} \right] \\
\end{align}$
We have one common term on both sides as the simplification as we get
\[\left[ \dfrac{1}{a}+\dfrac{c+b}{bc} \right]=\dfrac{bc+ac+ab}{abc}=\left[ \dfrac{1}{c}+\dfrac{b+a}{ab} \right]\]
Therefore, we can omit that from both sides and get $\left( c-b \right)=\left( b-a \right)$ which gives a, b, c are in A.P.
Note: We can also use the simple conditions of A.P. to prove that a, b, c are in A.P.
We know that any binary operation of same number with the A.P. numbers won’t change the conditions of the A.P.
For our given terms $a\left( \dfrac{1}{b}+\dfrac{1}{c} \right)$, $b\left( \dfrac{1}{c}+\dfrac{1}{a} \right)$, $c\left( \dfrac{1}{a}+\dfrac{1}{b} \right)$ are in A.P.
We add 1 to all of the them and they still remain in A.P.
$a\left( \dfrac{1}{b}+\dfrac{1}{c} \right)+1=a\left( \dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c} \right)$, $b\left( \dfrac{1}{c}+\dfrac{1}{a} \right)+1=b\left( \dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c} \right)$, $c\left( \dfrac{1}{a}+\dfrac{1}{b} \right)+1=c\left( \dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c} \right)$ are in A.P.
We now divide with $\left( \dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c} \right)$ and still they remain as A.P.
Therefore, a, b, c are in A.P.
Complete step-by-step solution:
The terms $a\left( \dfrac{1}{b}+\dfrac{1}{c} \right)$, $b\left( \dfrac{1}{c}+\dfrac{1}{a} \right)$, $c\left( \dfrac{1}{a}+\dfrac{1}{b} \right)$ are in A.P.
If the terms $x,y,z$ are in A.P. then we can say that $z-y=y-x$.
Therefore, $c\left( \dfrac{1}{a}+\dfrac{1}{b} \right)-b\left( \dfrac{1}{c}+\dfrac{1}{a} \right)=b\left( \dfrac{1}{c}+\dfrac{1}{a} \right)-a\left( \dfrac{1}{b}+\dfrac{1}{c} \right)$.
We now simplify the equation to get
$\begin{align}
& c\left( \dfrac{1}{a}+\dfrac{1}{b} \right)-b\left( \dfrac{1}{c}+\dfrac{1}{a} \right)=b\left( \dfrac{1}{c}+\dfrac{1}{a} \right)-a\left( \dfrac{1}{b}+\dfrac{1}{c} \right) \\
& \Rightarrow \dfrac{c}{a}+\dfrac{c}{b}-\dfrac{b}{c}-\dfrac{b}{a}=\dfrac{b}{c}+\dfrac{b}{a}-\dfrac{a}{b}-\dfrac{a}{c} \\
\end{align}$
Now based on the denominator value we take the common terms out.
$\begin{align}
& \dfrac{c}{a}+\dfrac{c}{b}-\dfrac{b}{c}-\dfrac{b}{a}=\dfrac{b}{c}+\dfrac{b}{a}-\dfrac{a}{b}-\dfrac{a}{c} \\
& \Rightarrow \left( \dfrac{c}{a}-\dfrac{b}{a} \right)+\left( \dfrac{c}{b}-\dfrac{b}{c} \right)=\left( \dfrac{b}{c}-\dfrac{a}{c} \right)+\left( \dfrac{b}{a}-\dfrac{a}{b} \right) \\
\end{align}$
We complete the simplification of the dfractions in the brackets and get
$\begin{align}
& \left( \dfrac{c}{a}-\dfrac{b}{a} \right)+\left( \dfrac{c}{b}-\dfrac{b}{c} \right)=\left( \dfrac{b}{c}-\dfrac{a}{c} \right)+\left( \dfrac{b}{a}-\dfrac{a}{b} \right) \\
& \Rightarrow \left( \dfrac{c-b}{a} \right)+\left( \dfrac{{{c}^{2}}-{{b}^{2}}}{bc} \right)=\left( \dfrac{b-a}{c} \right)+\left( \dfrac{{{b}^{2}}-{{a}^{2}}}{ab} \right) \\
\end{align}$
We now can take common $\left( c-b \right)$ from left side and $\left( b-a \right)$ from right side
$\begin{align}
& \left( \dfrac{c-b}{a} \right)+\left( \dfrac{{{c}^{2}}-{{b}^{2}}}{bc} \right)=\left( \dfrac{b-a}{c} \right)+\left( \dfrac{{{b}^{2}}-{{a}^{2}}}{ab} \right) \\
& \Rightarrow \left( c-b \right)\left[ \dfrac{1}{a}+\dfrac{c+b}{bc} \right]=\left( b-a \right)\left[ \dfrac{1}{c}+\dfrac{b+a}{ab} \right] \\
\end{align}$
We have one common term on both sides as the simplification as we get
\[\left[ \dfrac{1}{a}+\dfrac{c+b}{bc} \right]=\dfrac{bc+ac+ab}{abc}=\left[ \dfrac{1}{c}+\dfrac{b+a}{ab} \right]\]
Therefore, we can omit that from both sides and get $\left( c-b \right)=\left( b-a \right)$ which gives a, b, c are in A.P.
Note: We can also use the simple conditions of A.P. to prove that a, b, c are in A.P.
We know that any binary operation of same number with the A.P. numbers won’t change the conditions of the A.P.
For our given terms $a\left( \dfrac{1}{b}+\dfrac{1}{c} \right)$, $b\left( \dfrac{1}{c}+\dfrac{1}{a} \right)$, $c\left( \dfrac{1}{a}+\dfrac{1}{b} \right)$ are in A.P.
We add 1 to all of the them and they still remain in A.P.
$a\left( \dfrac{1}{b}+\dfrac{1}{c} \right)+1=a\left( \dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c} \right)$, $b\left( \dfrac{1}{c}+\dfrac{1}{a} \right)+1=b\left( \dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c} \right)$, $c\left( \dfrac{1}{a}+\dfrac{1}{b} \right)+1=c\left( \dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c} \right)$ are in A.P.
We now divide with $\left( \dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c} \right)$ and still they remain as A.P.
Therefore, a, b, c are in A.P.
Recently Updated Pages
Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Class 10 Question and Answer - Your Ultimate Solutions Guide

Master Class 11 Economics: Engaging Questions & Answers for Success

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

When and how did Canada eventually gain its independence class 10 social science CBSE

Fill the blanks with proper collective nouns 1 A of class 10 english CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Write examples of herbivores carnivores and omnivo class 10 biology CBSE

10 examples of evaporation in daily life with explanations
