
If the terms $a\left( \dfrac{1}{b}+\dfrac{1}{c} \right)$, $b\left( \dfrac{1}{c}+\dfrac{1}{a} \right)$, $c\left( \dfrac{1}{a}+\dfrac{1}{b} \right)$ are in A.P. Prove that a, b, c are in A.P.
Answer
528.6k+ views
Hint: We first try to find if the conditions for the terms $a\left( \dfrac{1}{b}+\dfrac{1}{c} \right)$, $b\left( \dfrac{1}{c}+\dfrac{1}{a} \right)$, $c\left( \dfrac{1}{a}+\dfrac{1}{b} \right)$ satisfy. For $x,y,z$ are in A.P, we can say that $z-y=y-x$. We also can prove that part with the use of binary operations for $a\left( \dfrac{1}{b}+\dfrac{1}{c} \right)$, $b\left( \dfrac{1}{c}+\dfrac{1}{a} \right)$, $c\left( \dfrac{1}{a}+\dfrac{1}{b} \right)$.
Complete step-by-step solution:
The terms $a\left( \dfrac{1}{b}+\dfrac{1}{c} \right)$, $b\left( \dfrac{1}{c}+\dfrac{1}{a} \right)$, $c\left( \dfrac{1}{a}+\dfrac{1}{b} \right)$ are in A.P.
If the terms $x,y,z$ are in A.P. then we can say that $z-y=y-x$.
Therefore, $c\left( \dfrac{1}{a}+\dfrac{1}{b} \right)-b\left( \dfrac{1}{c}+\dfrac{1}{a} \right)=b\left( \dfrac{1}{c}+\dfrac{1}{a} \right)-a\left( \dfrac{1}{b}+\dfrac{1}{c} \right)$.
We now simplify the equation to get
$\begin{align}
& c\left( \dfrac{1}{a}+\dfrac{1}{b} \right)-b\left( \dfrac{1}{c}+\dfrac{1}{a} \right)=b\left( \dfrac{1}{c}+\dfrac{1}{a} \right)-a\left( \dfrac{1}{b}+\dfrac{1}{c} \right) \\
& \Rightarrow \dfrac{c}{a}+\dfrac{c}{b}-\dfrac{b}{c}-\dfrac{b}{a}=\dfrac{b}{c}+\dfrac{b}{a}-\dfrac{a}{b}-\dfrac{a}{c} \\
\end{align}$
Now based on the denominator value we take the common terms out.
$\begin{align}
& \dfrac{c}{a}+\dfrac{c}{b}-\dfrac{b}{c}-\dfrac{b}{a}=\dfrac{b}{c}+\dfrac{b}{a}-\dfrac{a}{b}-\dfrac{a}{c} \\
& \Rightarrow \left( \dfrac{c}{a}-\dfrac{b}{a} \right)+\left( \dfrac{c}{b}-\dfrac{b}{c} \right)=\left( \dfrac{b}{c}-\dfrac{a}{c} \right)+\left( \dfrac{b}{a}-\dfrac{a}{b} \right) \\
\end{align}$
We complete the simplification of the dfractions in the brackets and get
$\begin{align}
& \left( \dfrac{c}{a}-\dfrac{b}{a} \right)+\left( \dfrac{c}{b}-\dfrac{b}{c} \right)=\left( \dfrac{b}{c}-\dfrac{a}{c} \right)+\left( \dfrac{b}{a}-\dfrac{a}{b} \right) \\
& \Rightarrow \left( \dfrac{c-b}{a} \right)+\left( \dfrac{{{c}^{2}}-{{b}^{2}}}{bc} \right)=\left( \dfrac{b-a}{c} \right)+\left( \dfrac{{{b}^{2}}-{{a}^{2}}}{ab} \right) \\
\end{align}$
We now can take common $\left( c-b \right)$ from left side and $\left( b-a \right)$ from right side
$\begin{align}
& \left( \dfrac{c-b}{a} \right)+\left( \dfrac{{{c}^{2}}-{{b}^{2}}}{bc} \right)=\left( \dfrac{b-a}{c} \right)+\left( \dfrac{{{b}^{2}}-{{a}^{2}}}{ab} \right) \\
& \Rightarrow \left( c-b \right)\left[ \dfrac{1}{a}+\dfrac{c+b}{bc} \right]=\left( b-a \right)\left[ \dfrac{1}{c}+\dfrac{b+a}{ab} \right] \\
\end{align}$
We have one common term on both sides as the simplification as we get
\[\left[ \dfrac{1}{a}+\dfrac{c+b}{bc} \right]=\dfrac{bc+ac+ab}{abc}=\left[ \dfrac{1}{c}+\dfrac{b+a}{ab} \right]\]
Therefore, we can omit that from both sides and get $\left( c-b \right)=\left( b-a \right)$ which gives a, b, c are in A.P.
Note: We can also use the simple conditions of A.P. to prove that a, b, c are in A.P.
We know that any binary operation of same number with the A.P. numbers won’t change the conditions of the A.P.
For our given terms $a\left( \dfrac{1}{b}+\dfrac{1}{c} \right)$, $b\left( \dfrac{1}{c}+\dfrac{1}{a} \right)$, $c\left( \dfrac{1}{a}+\dfrac{1}{b} \right)$ are in A.P.
We add 1 to all of the them and they still remain in A.P.
$a\left( \dfrac{1}{b}+\dfrac{1}{c} \right)+1=a\left( \dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c} \right)$, $b\left( \dfrac{1}{c}+\dfrac{1}{a} \right)+1=b\left( \dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c} \right)$, $c\left( \dfrac{1}{a}+\dfrac{1}{b} \right)+1=c\left( \dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c} \right)$ are in A.P.
We now divide with $\left( \dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c} \right)$ and still they remain as A.P.
Therefore, a, b, c are in A.P.
Complete step-by-step solution:
The terms $a\left( \dfrac{1}{b}+\dfrac{1}{c} \right)$, $b\left( \dfrac{1}{c}+\dfrac{1}{a} \right)$, $c\left( \dfrac{1}{a}+\dfrac{1}{b} \right)$ are in A.P.
If the terms $x,y,z$ are in A.P. then we can say that $z-y=y-x$.
Therefore, $c\left( \dfrac{1}{a}+\dfrac{1}{b} \right)-b\left( \dfrac{1}{c}+\dfrac{1}{a} \right)=b\left( \dfrac{1}{c}+\dfrac{1}{a} \right)-a\left( \dfrac{1}{b}+\dfrac{1}{c} \right)$.
We now simplify the equation to get
$\begin{align}
& c\left( \dfrac{1}{a}+\dfrac{1}{b} \right)-b\left( \dfrac{1}{c}+\dfrac{1}{a} \right)=b\left( \dfrac{1}{c}+\dfrac{1}{a} \right)-a\left( \dfrac{1}{b}+\dfrac{1}{c} \right) \\
& \Rightarrow \dfrac{c}{a}+\dfrac{c}{b}-\dfrac{b}{c}-\dfrac{b}{a}=\dfrac{b}{c}+\dfrac{b}{a}-\dfrac{a}{b}-\dfrac{a}{c} \\
\end{align}$
Now based on the denominator value we take the common terms out.
$\begin{align}
& \dfrac{c}{a}+\dfrac{c}{b}-\dfrac{b}{c}-\dfrac{b}{a}=\dfrac{b}{c}+\dfrac{b}{a}-\dfrac{a}{b}-\dfrac{a}{c} \\
& \Rightarrow \left( \dfrac{c}{a}-\dfrac{b}{a} \right)+\left( \dfrac{c}{b}-\dfrac{b}{c} \right)=\left( \dfrac{b}{c}-\dfrac{a}{c} \right)+\left( \dfrac{b}{a}-\dfrac{a}{b} \right) \\
\end{align}$
We complete the simplification of the dfractions in the brackets and get
$\begin{align}
& \left( \dfrac{c}{a}-\dfrac{b}{a} \right)+\left( \dfrac{c}{b}-\dfrac{b}{c} \right)=\left( \dfrac{b}{c}-\dfrac{a}{c} \right)+\left( \dfrac{b}{a}-\dfrac{a}{b} \right) \\
& \Rightarrow \left( \dfrac{c-b}{a} \right)+\left( \dfrac{{{c}^{2}}-{{b}^{2}}}{bc} \right)=\left( \dfrac{b-a}{c} \right)+\left( \dfrac{{{b}^{2}}-{{a}^{2}}}{ab} \right) \\
\end{align}$
We now can take common $\left( c-b \right)$ from left side and $\left( b-a \right)$ from right side
$\begin{align}
& \left( \dfrac{c-b}{a} \right)+\left( \dfrac{{{c}^{2}}-{{b}^{2}}}{bc} \right)=\left( \dfrac{b-a}{c} \right)+\left( \dfrac{{{b}^{2}}-{{a}^{2}}}{ab} \right) \\
& \Rightarrow \left( c-b \right)\left[ \dfrac{1}{a}+\dfrac{c+b}{bc} \right]=\left( b-a \right)\left[ \dfrac{1}{c}+\dfrac{b+a}{ab} \right] \\
\end{align}$
We have one common term on both sides as the simplification as we get
\[\left[ \dfrac{1}{a}+\dfrac{c+b}{bc} \right]=\dfrac{bc+ac+ab}{abc}=\left[ \dfrac{1}{c}+\dfrac{b+a}{ab} \right]\]
Therefore, we can omit that from both sides and get $\left( c-b \right)=\left( b-a \right)$ which gives a, b, c are in A.P.
Note: We can also use the simple conditions of A.P. to prove that a, b, c are in A.P.
We know that any binary operation of same number with the A.P. numbers won’t change the conditions of the A.P.
For our given terms $a\left( \dfrac{1}{b}+\dfrac{1}{c} \right)$, $b\left( \dfrac{1}{c}+\dfrac{1}{a} \right)$, $c\left( \dfrac{1}{a}+\dfrac{1}{b} \right)$ are in A.P.
We add 1 to all of the them and they still remain in A.P.
$a\left( \dfrac{1}{b}+\dfrac{1}{c} \right)+1=a\left( \dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c} \right)$, $b\left( \dfrac{1}{c}+\dfrac{1}{a} \right)+1=b\left( \dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c} \right)$, $c\left( \dfrac{1}{a}+\dfrac{1}{b} \right)+1=c\left( \dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c} \right)$ are in A.P.
We now divide with $\left( \dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c} \right)$ and still they remain as A.P.
Therefore, a, b, c are in A.P.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

