
If the terms \[{{a}_{1}},{{a}_{2}},{{a}_{3}},{{a}_{4}},{{a}_{5}}\] are in AP with common difference not equal to 0, then find the value of \[\sum\limits_{i=1}^{5}{{{a}_{i}}},\] when \[{{a}_{3}}=2.\]
Answer
587.4k+ views
Hint: We are given that \[{{a}_{1}},{{a}_{2}},{{a}_{3}},{{a}_{4}},{{a}_{5}}\] are in AP. We will then use the \[{{n}^{th}}\] term formula of AP given as \[{{a}_{n}}=a+\left( n-1 \right)d\] to unite each term in the term of a and d. Then we have \[{{a}_{3}}\] as 2. So, we will simplify and we get, a + 2d = 2. Now, at last, we will sum the first five terms of AP. We will get our summation in the form of a and d, then we will simplify and get the value of \[\sum\limits_{i=1}^{5}{{{a}_{i}}}.\]
Complete step-by-step solution:
We are given that \[{{a}_{1}},{{a}_{2}},{{a}_{3}},{{a}_{4}},{{a}_{5}}\] are in AP. We know that AP (Arithmetic Progression) is a sequence in which terms are increased by the same common difference. The general term of an AP is given by the form \[{{a}_{n}}=a+\left( n-1 \right)d\] where a is the first term and d is the common difference.
So, using this, we get, \[{{a}_{1}}\] mean n = 1 in \[{{a}_{n}}.\]
\[\Rightarrow {{a}_{1}}=a+\left( 1-1 \right)d\]
\[\Rightarrow {{a}_{1}}=a\]
So, we get,
\[{{a}_{1}}=a.....\left( i \right)\]
Now putting n as 2, we get,
\[{{a}_{2}}=a+\left( 2-1 \right)d\]
\[\Rightarrow {{a}_{2}}=a+d\]
So, we get,
\[{{a}_{2}}=a+d.....\left( ii \right)\]
Putting n = 3, we get,
\[{{a}_{3}}=a+2d.....\left( iii \right)\]
Now put n = 4, we will get,
\[{{a}_{4}}=a+\left( 4-1 \right)d\]
\[\Rightarrow {{a}_{4}}=a+3d\]
So, we get,
\[\Rightarrow {{a}_{4}}=a+3d......\left( iv \right)\]
Now, lastly putting n = 5, we will get,
\[\Rightarrow {{a}_{5}}=a+\left( 5-1 \right)d\]
\[\Rightarrow {{a}_{5}}=a+4d\]
So, we get,
\[\Rightarrow {{a}_{5}}=a+4d......\left( v \right)\]
Now, we also have, \[{{a}_{3}}=2.\]
\[\Rightarrow a+2d=2......\left( vi \right)\]
Now, we have to find \[\sum\limits_{i=1}^{5}{{{a}_{i}}}.\]
We know that \[\sum\limits_{i=1}^{5}{{{a}_{i}}}\] the mean sum of the first five terms.
\[\Rightarrow \sum\limits_{i=1}^{5}{{{a}_{i}}}={{a}_{1}}+{{a}_{2}}+{{a}_{3}}+{{a}_{4}}+{{a}_{5}}\]
Now using (i), (ii), (iii), (iv) and (v), we get,
\[\Rightarrow \sum\limits_{i=1}^{5}{{{a}_{i}}}=a+a+d+a+2d+a+3d+a+4d\]
Further adding, we get,
\[\Rightarrow \sum\limits_{i=1}^{5}{{{a}_{i}}}=5a+10d\]
Taking 5 commons, we get,
\[\Rightarrow \sum\limits_{i=1}^{5}{{{a}_{i}}}=5\left( a+2d \right)\]
As we have $a + 2d$ as $24 using (vi). So, we get,
\[\Rightarrow \sum\limits_{i=1}^{5}{{{a}_{i}}}=5\left( a+2d \right)\]
\[\Rightarrow \sum\limits_{i=1}^{5}{{{a}_{i}}}=5\times 2\]
\[\Rightarrow \sum\limits_{i=1}^{5}{{{a}_{i}}}=10\]
So, we get, \[\sum\limits_{i=1}^{5}{{{a}_{i}}}\] as 10.
Note: The alternate method in an AP is the sum of the first and fifth term is the same as the sum of the second and fourth term, i.e.
\[\Rightarrow {{a}_{1}}+{{a}_{5}}={{a}_{2}}+{{a}_{4}}\]
And these terms are equal as 2 times the third term. So, we have, \[{{a}_{1}}+{{a}_{5}}={{a}_{2}}+{{a}_{4}}\] and these terms are equal as 2 times the third term. So, we have,
\[{{a}_{1}}+{{a}_{5}}={{a}_{2}}+{{a}_{4}}=2{{a}_{3}}......\left( vii \right)\]
\[\sum\limits_{i=1}^{5}{{{a}_{i}}}={{a}_{1}}+{{a}_{2}}+{{a}_{3}}+{{a}_{4}}+{{a}_{5}}\]
\[\Rightarrow \sum\limits_{i=1}^{5}{{{a}_{i}}}={{a}_{1}}+{{a}_{5}}+{{a}_{3}}+{{a}_{2}}+{{a}_{4}}\]
Now using (vii), we get,
\[\Rightarrow \sum\limits_{i=1}^{5}{{{a}_{i}}}=2{{a}_{3}}+{{a}_{3}}+2{{a}_{3}}\]
Simplifying further, we get,
\[\Rightarrow \sum\limits_{i=1}^{5}{{{a}_{i}}}=5{{a}_{3}}\]
As, \[{{a}_{3}}=2,\] so, we get,
\[\Rightarrow \sum\limits_{i=1}^{5}{{{a}_{i}}}=5\times 2=10\]
Complete step-by-step solution:
We are given that \[{{a}_{1}},{{a}_{2}},{{a}_{3}},{{a}_{4}},{{a}_{5}}\] are in AP. We know that AP (Arithmetic Progression) is a sequence in which terms are increased by the same common difference. The general term of an AP is given by the form \[{{a}_{n}}=a+\left( n-1 \right)d\] where a is the first term and d is the common difference.
So, using this, we get, \[{{a}_{1}}\] mean n = 1 in \[{{a}_{n}}.\]
\[\Rightarrow {{a}_{1}}=a+\left( 1-1 \right)d\]
\[\Rightarrow {{a}_{1}}=a\]
So, we get,
\[{{a}_{1}}=a.....\left( i \right)\]
Now putting n as 2, we get,
\[{{a}_{2}}=a+\left( 2-1 \right)d\]
\[\Rightarrow {{a}_{2}}=a+d\]
So, we get,
\[{{a}_{2}}=a+d.....\left( ii \right)\]
Putting n = 3, we get,
\[{{a}_{3}}=a+2d.....\left( iii \right)\]
Now put n = 4, we will get,
\[{{a}_{4}}=a+\left( 4-1 \right)d\]
\[\Rightarrow {{a}_{4}}=a+3d\]
So, we get,
\[\Rightarrow {{a}_{4}}=a+3d......\left( iv \right)\]
Now, lastly putting n = 5, we will get,
\[\Rightarrow {{a}_{5}}=a+\left( 5-1 \right)d\]
\[\Rightarrow {{a}_{5}}=a+4d\]
So, we get,
\[\Rightarrow {{a}_{5}}=a+4d......\left( v \right)\]
Now, we also have, \[{{a}_{3}}=2.\]
\[\Rightarrow a+2d=2......\left( vi \right)\]
Now, we have to find \[\sum\limits_{i=1}^{5}{{{a}_{i}}}.\]
We know that \[\sum\limits_{i=1}^{5}{{{a}_{i}}}\] the mean sum of the first five terms.
\[\Rightarrow \sum\limits_{i=1}^{5}{{{a}_{i}}}={{a}_{1}}+{{a}_{2}}+{{a}_{3}}+{{a}_{4}}+{{a}_{5}}\]
Now using (i), (ii), (iii), (iv) and (v), we get,
\[\Rightarrow \sum\limits_{i=1}^{5}{{{a}_{i}}}=a+a+d+a+2d+a+3d+a+4d\]
Further adding, we get,
\[\Rightarrow \sum\limits_{i=1}^{5}{{{a}_{i}}}=5a+10d\]
Taking 5 commons, we get,
\[\Rightarrow \sum\limits_{i=1}^{5}{{{a}_{i}}}=5\left( a+2d \right)\]
As we have $a + 2d$ as $24 using (vi). So, we get,
\[\Rightarrow \sum\limits_{i=1}^{5}{{{a}_{i}}}=5\left( a+2d \right)\]
\[\Rightarrow \sum\limits_{i=1}^{5}{{{a}_{i}}}=5\times 2\]
\[\Rightarrow \sum\limits_{i=1}^{5}{{{a}_{i}}}=10\]
So, we get, \[\sum\limits_{i=1}^{5}{{{a}_{i}}}\] as 10.
Note: The alternate method in an AP is the sum of the first and fifth term is the same as the sum of the second and fourth term, i.e.
\[\Rightarrow {{a}_{1}}+{{a}_{5}}={{a}_{2}}+{{a}_{4}}\]
And these terms are equal as 2 times the third term. So, we have, \[{{a}_{1}}+{{a}_{5}}={{a}_{2}}+{{a}_{4}}\] and these terms are equal as 2 times the third term. So, we have,
\[{{a}_{1}}+{{a}_{5}}={{a}_{2}}+{{a}_{4}}=2{{a}_{3}}......\left( vii \right)\]
\[\sum\limits_{i=1}^{5}{{{a}_{i}}}={{a}_{1}}+{{a}_{2}}+{{a}_{3}}+{{a}_{4}}+{{a}_{5}}\]
\[\Rightarrow \sum\limits_{i=1}^{5}{{{a}_{i}}}={{a}_{1}}+{{a}_{5}}+{{a}_{3}}+{{a}_{2}}+{{a}_{4}}\]
Now using (vii), we get,
\[\Rightarrow \sum\limits_{i=1}^{5}{{{a}_{i}}}=2{{a}_{3}}+{{a}_{3}}+2{{a}_{3}}\]
Simplifying further, we get,
\[\Rightarrow \sum\limits_{i=1}^{5}{{{a}_{i}}}=5{{a}_{3}}\]
As, \[{{a}_{3}}=2,\] so, we get,
\[\Rightarrow \sum\limits_{i=1}^{5}{{{a}_{i}}}=5\times 2=10\]
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

A moving boat is observed from the top of a 150 m high class 10 maths CBSE

