
If the tangents of the angles of a triangle are in A.P prove that the squares of the sides are in the ratio${x^2}\left( {{x^2} + 9} \right):{\left( {3 + {x^2}} \right)^2}:9\left( {1 + {x^2}} \right)$, where x is tangents of the least or greatest angle.
Answer
597.3k+ views
Hint: Using$\operatorname{Tan} A\operatorname{Tan} B\operatorname{Tan} C = \tan A + \tan B + \tan C$, we will form the equations in x. Using these values we apply alternate sine rule to determine the value of squares of the sides. Alternate sine rule is$\dfrac{a}{{\sin A}} = \dfrac{b}{{\sin B}} = \dfrac{c}{{\sin C}}$, from this we can say$$\dfrac{{{a^2}}}{{{{\sin }^2}A}} = \dfrac{{{b^2}}}{{{{\sin }^2}B}} = \dfrac{{{c^2}}}{{{{\sin }^2}C}}$$.
Therefore$${a^2}:{b^2}:{c^2} = {\sin ^2}A:{\sin ^2}B:{\sin ^2}C$$
Complete step by step answer:
Given the tangents of the angles of a triangle are in Arithmetic Progression.
We need to prove that the squares of the sides are in the ratio${x^2}\left( {{x^2} + 9} \right):{\left( {3 + {x^2}} \right)^2}:9\left( {1 + {x^2}} \right)$
Arithmetic Progression: It is a sequence of numbers such that the difference of any two successive members is a constant.
Since$\tan A$,$\tan B$,$\tan C$are in A.P., we have
$\tan A + \tan C = 2\tan B$… (1)
Or $x + \tan C = 2\tan B$… (2)
Where x = tan A. (From the given: x is tangent of the least or greatest angle)
[Observer that if tan A, tan B, tan C are in A.P. then tan A is either the greatest of the least amongst tan A, tan B and tan C].
Now in a triangle ABC, we always have
$\operatorname{Tan} A\operatorname{Tan} B\operatorname{Tan} C = \tan A + \tan B + \tan C$… (3)
$\therefore $From (1), (2) and (3), we obtain
${\text{x tanB}}\left( {2\tan B - x} \right) = 2\tan B + \tan B$
${\text{x }}\left( {2\tan B - x} \right) = 3$ [Hence tan B$ \ne $0]
$\therefore $Tan B = $\dfrac{{\left( {3 + {x^2}} \right)}}{{2x}}$
And Tan C = 2 Tan B – x
$ \Rightarrow 2 \times \dfrac{{\left( {3 + {x^2}} \right)}}{{2x}} - x$
$ \Rightarrow \dfrac{{\left( {3 + {x^2}} \right)}}{x} - x$
$ \Rightarrow \dfrac{3}{x} + x - x$$ = \dfrac{3}{x}$
Now in a triangle $\vartriangle $ABC, we have
$\dfrac{a}{{\sin A}} = \dfrac{b}{{\sin B}} = \dfrac{c}{{\sin C}}$ (Alternate Sine rule)
$$ \Rightarrow \dfrac{{{a^2}}}{{{{\sin }^2}A}} = \dfrac{{{b^2}}}{{{{\sin }^2}B}} = \dfrac{{{c^2}}}{{{{\sin }^2}C}}$$
Hence $${a^2}:{b^2}:{c^2} = {\sin ^2}A:{\sin ^2}B:{\sin ^2}C$$
But tan A = x $$ \Rightarrow \sin A = \dfrac{x}{{\sqrt {1 + {x^2}} }}$$ (Using the trigonometric ratios and Pythagoras theorem)
$ \Rightarrow {\sin ^2}A = \dfrac{{{x^2}}}{{1 + {x^2}}}$
And tan B = $\dfrac{{\left( {3 + {x^2}} \right)}}{{2x}}$$$ \Rightarrow \sin B = \dfrac{{3 + {x^2}}}{{\sqrt {{{\left( {3 + {x^2}} \right)}^2} + 4{x^2}} }}$$
$$ \Rightarrow {\sin ^2}B = \dfrac{{{{\left( {3 + {x^2}} \right)}^2}}}{{{{\left( {\sqrt {{{\left( {3 + {x^2}} \right)}^2} + 4{x^2}} } \right)}^2}}}$$
$$ \Rightarrow {\sin ^2}B = \dfrac{{{{\left( {3 + {x^2}} \right)}^2}}}{{{{\left( {3 + {x^2}} \right)}^2} + 4{x^2}}}$$
$$ \Rightarrow {\sin ^2}B = \dfrac{{{{\left( {3 + {x^2}} \right)}^2}}}{{\left( {9 + 6{x^2} + {x^4}} \right) + 4{x^2}}}$$
$$ \Rightarrow {\sin ^2}B = \dfrac{{{{\left( {3 + {x^2}} \right)}^2}}}{{\left( {9 + 10{x^2} + {x^4}} \right)}}$$
$$ \Rightarrow {\sin ^2}B = \dfrac{{{{\left( {3 + {x^2}} \right)}^2}}}{{\left( {1 + {x^2}} \right)\left( {9 + {x^2}} \right)}}$$
And tan C = $\dfrac{3}{x}$$$ \Rightarrow \sin C = \dfrac{3}{{\sqrt {\left( {9 + {x^2}} \right)} }}$$
$$ \Rightarrow {\sin ^2}C = \dfrac{9}{{9 + {x^2}}}$$
$$\therefore {a^2}:{b^2}:{c^2} = {\sin ^2}A:{\sin ^2}B:{\sin ^2}C$$
$\therefore {a^2}:{b^2}:{c^2}::\dfrac{{{x^2}}}{{1 + {x^2}}}:\dfrac{{{{\left( {3 + {x^2}} \right)}^2}}}{{\left( {1 + {x^2}} \right)\left( {9 + {x^2}} \right)}}:\dfrac{9}{{9 + {x^2}}}::{x^2}\left( {9 + {x^2}} \right):{(3 + {x^2})^2}:9(1 + {x^2}).$
Note: We have an ambiguous case here that is, when two sides say ‘a’ and ‘b’ are given and one angle opposite to these sides say A is given, then by sine rule$\dfrac{a}{{\sin A}} = \dfrac{b}{{\sin B}}$. Therefore$\sin B = \dfrac{b}{a}\sin A = k$, say. There will be two values of angle B say${B_1}$and${B_2}$ which will satisfy the equation$\sin B = k$. Evidently these two values are supplementary i.e. if${B_1} = \alpha $then${B_2} = \pi - \alpha $i.e. ${B_1} + {B_2} = \pi $.
Therefore$${a^2}:{b^2}:{c^2} = {\sin ^2}A:{\sin ^2}B:{\sin ^2}C$$
Complete step by step answer:
Given the tangents of the angles of a triangle are in Arithmetic Progression.
We need to prove that the squares of the sides are in the ratio${x^2}\left( {{x^2} + 9} \right):{\left( {3 + {x^2}} \right)^2}:9\left( {1 + {x^2}} \right)$
Arithmetic Progression: It is a sequence of numbers such that the difference of any two successive members is a constant.
Since$\tan A$,$\tan B$,$\tan C$are in A.P., we have
$\tan A + \tan C = 2\tan B$… (1)
Or $x + \tan C = 2\tan B$… (2)
Where x = tan A. (From the given: x is tangent of the least or greatest angle)
[Observer that if tan A, tan B, tan C are in A.P. then tan A is either the greatest of the least amongst tan A, tan B and tan C].
Now in a triangle ABC, we always have
$\operatorname{Tan} A\operatorname{Tan} B\operatorname{Tan} C = \tan A + \tan B + \tan C$… (3)
$\therefore $From (1), (2) and (3), we obtain
${\text{x tanB}}\left( {2\tan B - x} \right) = 2\tan B + \tan B$
${\text{x }}\left( {2\tan B - x} \right) = 3$ [Hence tan B$ \ne $0]
$\therefore $Tan B = $\dfrac{{\left( {3 + {x^2}} \right)}}{{2x}}$
And Tan C = 2 Tan B – x
$ \Rightarrow 2 \times \dfrac{{\left( {3 + {x^2}} \right)}}{{2x}} - x$
$ \Rightarrow \dfrac{{\left( {3 + {x^2}} \right)}}{x} - x$
$ \Rightarrow \dfrac{3}{x} + x - x$$ = \dfrac{3}{x}$
Now in a triangle $\vartriangle $ABC, we have
$\dfrac{a}{{\sin A}} = \dfrac{b}{{\sin B}} = \dfrac{c}{{\sin C}}$ (Alternate Sine rule)
$$ \Rightarrow \dfrac{{{a^2}}}{{{{\sin }^2}A}} = \dfrac{{{b^2}}}{{{{\sin }^2}B}} = \dfrac{{{c^2}}}{{{{\sin }^2}C}}$$
Hence $${a^2}:{b^2}:{c^2} = {\sin ^2}A:{\sin ^2}B:{\sin ^2}C$$
But tan A = x $$ \Rightarrow \sin A = \dfrac{x}{{\sqrt {1 + {x^2}} }}$$ (Using the trigonometric ratios and Pythagoras theorem)
$ \Rightarrow {\sin ^2}A = \dfrac{{{x^2}}}{{1 + {x^2}}}$
And tan B = $\dfrac{{\left( {3 + {x^2}} \right)}}{{2x}}$$$ \Rightarrow \sin B = \dfrac{{3 + {x^2}}}{{\sqrt {{{\left( {3 + {x^2}} \right)}^2} + 4{x^2}} }}$$
$$ \Rightarrow {\sin ^2}B = \dfrac{{{{\left( {3 + {x^2}} \right)}^2}}}{{{{\left( {\sqrt {{{\left( {3 + {x^2}} \right)}^2} + 4{x^2}} } \right)}^2}}}$$
$$ \Rightarrow {\sin ^2}B = \dfrac{{{{\left( {3 + {x^2}} \right)}^2}}}{{{{\left( {3 + {x^2}} \right)}^2} + 4{x^2}}}$$
$$ \Rightarrow {\sin ^2}B = \dfrac{{{{\left( {3 + {x^2}} \right)}^2}}}{{\left( {9 + 6{x^2} + {x^4}} \right) + 4{x^2}}}$$
$$ \Rightarrow {\sin ^2}B = \dfrac{{{{\left( {3 + {x^2}} \right)}^2}}}{{\left( {9 + 10{x^2} + {x^4}} \right)}}$$
$$ \Rightarrow {\sin ^2}B = \dfrac{{{{\left( {3 + {x^2}} \right)}^2}}}{{\left( {1 + {x^2}} \right)\left( {9 + {x^2}} \right)}}$$
And tan C = $\dfrac{3}{x}$$$ \Rightarrow \sin C = \dfrac{3}{{\sqrt {\left( {9 + {x^2}} \right)} }}$$
$$ \Rightarrow {\sin ^2}C = \dfrac{9}{{9 + {x^2}}}$$
$$\therefore {a^2}:{b^2}:{c^2} = {\sin ^2}A:{\sin ^2}B:{\sin ^2}C$$
$\therefore {a^2}:{b^2}:{c^2}::\dfrac{{{x^2}}}{{1 + {x^2}}}:\dfrac{{{{\left( {3 + {x^2}} \right)}^2}}}{{\left( {1 + {x^2}} \right)\left( {9 + {x^2}} \right)}}:\dfrac{9}{{9 + {x^2}}}::{x^2}\left( {9 + {x^2}} \right):{(3 + {x^2})^2}:9(1 + {x^2}).$
Note: We have an ambiguous case here that is, when two sides say ‘a’ and ‘b’ are given and one angle opposite to these sides say A is given, then by sine rule$\dfrac{a}{{\sin A}} = \dfrac{b}{{\sin B}}$. Therefore$\sin B = \dfrac{b}{a}\sin A = k$, say. There will be two values of angle B say${B_1}$and${B_2}$ which will satisfy the equation$\sin B = k$. Evidently these two values are supplementary i.e. if${B_1} = \alpha $then${B_2} = \pi - \alpha $i.e. ${B_1} + {B_2} = \pi $.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

A moving boat is observed from the top of a 150 m high class 10 maths CBSE

