
If the tangents of the angles of a triangle are in A.P prove that the squares of the sides are in the ratio${x^2}\left( {{x^2} + 9} \right):{\left( {3 + {x^2}} \right)^2}:9\left( {1 + {x^2}} \right)$, where x is tangents of the least or greatest angle.
Answer
583.2k+ views
Hint: Using$\operatorname{Tan} A\operatorname{Tan} B\operatorname{Tan} C = \tan A + \tan B + \tan C$, we will form the equations in x. Using these values we apply alternate sine rule to determine the value of squares of the sides. Alternate sine rule is$\dfrac{a}{{\sin A}} = \dfrac{b}{{\sin B}} = \dfrac{c}{{\sin C}}$, from this we can say$$\dfrac{{{a^2}}}{{{{\sin }^2}A}} = \dfrac{{{b^2}}}{{{{\sin }^2}B}} = \dfrac{{{c^2}}}{{{{\sin }^2}C}}$$.
Therefore$${a^2}:{b^2}:{c^2} = {\sin ^2}A:{\sin ^2}B:{\sin ^2}C$$
Complete step by step answer:
Given the tangents of the angles of a triangle are in Arithmetic Progression.
We need to prove that the squares of the sides are in the ratio${x^2}\left( {{x^2} + 9} \right):{\left( {3 + {x^2}} \right)^2}:9\left( {1 + {x^2}} \right)$
Arithmetic Progression: It is a sequence of numbers such that the difference of any two successive members is a constant.
Since$\tan A$,$\tan B$,$\tan C$are in A.P., we have
$\tan A + \tan C = 2\tan B$… (1)
Or $x + \tan C = 2\tan B$… (2)
Where x = tan A. (From the given: x is tangent of the least or greatest angle)
[Observer that if tan A, tan B, tan C are in A.P. then tan A is either the greatest of the least amongst tan A, tan B and tan C].
Now in a triangle ABC, we always have
$\operatorname{Tan} A\operatorname{Tan} B\operatorname{Tan} C = \tan A + \tan B + \tan C$… (3)
$\therefore $From (1), (2) and (3), we obtain
${\text{x tanB}}\left( {2\tan B - x} \right) = 2\tan B + \tan B$
${\text{x }}\left( {2\tan B - x} \right) = 3$ [Hence tan B$ \ne $0]
$\therefore $Tan B = $\dfrac{{\left( {3 + {x^2}} \right)}}{{2x}}$
And Tan C = 2 Tan B – x
$ \Rightarrow 2 \times \dfrac{{\left( {3 + {x^2}} \right)}}{{2x}} - x$
$ \Rightarrow \dfrac{{\left( {3 + {x^2}} \right)}}{x} - x$
$ \Rightarrow \dfrac{3}{x} + x - x$$ = \dfrac{3}{x}$
Now in a triangle $\vartriangle $ABC, we have
$\dfrac{a}{{\sin A}} = \dfrac{b}{{\sin B}} = \dfrac{c}{{\sin C}}$ (Alternate Sine rule)
$$ \Rightarrow \dfrac{{{a^2}}}{{{{\sin }^2}A}} = \dfrac{{{b^2}}}{{{{\sin }^2}B}} = \dfrac{{{c^2}}}{{{{\sin }^2}C}}$$
Hence $${a^2}:{b^2}:{c^2} = {\sin ^2}A:{\sin ^2}B:{\sin ^2}C$$
But tan A = x $$ \Rightarrow \sin A = \dfrac{x}{{\sqrt {1 + {x^2}} }}$$ (Using the trigonometric ratios and Pythagoras theorem)
$ \Rightarrow {\sin ^2}A = \dfrac{{{x^2}}}{{1 + {x^2}}}$
And tan B = $\dfrac{{\left( {3 + {x^2}} \right)}}{{2x}}$$$ \Rightarrow \sin B = \dfrac{{3 + {x^2}}}{{\sqrt {{{\left( {3 + {x^2}} \right)}^2} + 4{x^2}} }}$$
$$ \Rightarrow {\sin ^2}B = \dfrac{{{{\left( {3 + {x^2}} \right)}^2}}}{{{{\left( {\sqrt {{{\left( {3 + {x^2}} \right)}^2} + 4{x^2}} } \right)}^2}}}$$
$$ \Rightarrow {\sin ^2}B = \dfrac{{{{\left( {3 + {x^2}} \right)}^2}}}{{{{\left( {3 + {x^2}} \right)}^2} + 4{x^2}}}$$
$$ \Rightarrow {\sin ^2}B = \dfrac{{{{\left( {3 + {x^2}} \right)}^2}}}{{\left( {9 + 6{x^2} + {x^4}} \right) + 4{x^2}}}$$
$$ \Rightarrow {\sin ^2}B = \dfrac{{{{\left( {3 + {x^2}} \right)}^2}}}{{\left( {9 + 10{x^2} + {x^4}} \right)}}$$
$$ \Rightarrow {\sin ^2}B = \dfrac{{{{\left( {3 + {x^2}} \right)}^2}}}{{\left( {1 + {x^2}} \right)\left( {9 + {x^2}} \right)}}$$
And tan C = $\dfrac{3}{x}$$$ \Rightarrow \sin C = \dfrac{3}{{\sqrt {\left( {9 + {x^2}} \right)} }}$$
$$ \Rightarrow {\sin ^2}C = \dfrac{9}{{9 + {x^2}}}$$
$$\therefore {a^2}:{b^2}:{c^2} = {\sin ^2}A:{\sin ^2}B:{\sin ^2}C$$
$\therefore {a^2}:{b^2}:{c^2}::\dfrac{{{x^2}}}{{1 + {x^2}}}:\dfrac{{{{\left( {3 + {x^2}} \right)}^2}}}{{\left( {1 + {x^2}} \right)\left( {9 + {x^2}} \right)}}:\dfrac{9}{{9 + {x^2}}}::{x^2}\left( {9 + {x^2}} \right):{(3 + {x^2})^2}:9(1 + {x^2}).$
Note: We have an ambiguous case here that is, when two sides say ‘a’ and ‘b’ are given and one angle opposite to these sides say A is given, then by sine rule$\dfrac{a}{{\sin A}} = \dfrac{b}{{\sin B}}$. Therefore$\sin B = \dfrac{b}{a}\sin A = k$, say. There will be two values of angle B say${B_1}$and${B_2}$ which will satisfy the equation$\sin B = k$. Evidently these two values are supplementary i.e. if${B_1} = \alpha $then${B_2} = \pi - \alpha $i.e. ${B_1} + {B_2} = \pi $.
Therefore$${a^2}:{b^2}:{c^2} = {\sin ^2}A:{\sin ^2}B:{\sin ^2}C$$
Complete step by step answer:
Given the tangents of the angles of a triangle are in Arithmetic Progression.
We need to prove that the squares of the sides are in the ratio${x^2}\left( {{x^2} + 9} \right):{\left( {3 + {x^2}} \right)^2}:9\left( {1 + {x^2}} \right)$
Arithmetic Progression: It is a sequence of numbers such that the difference of any two successive members is a constant.
Since$\tan A$,$\tan B$,$\tan C$are in A.P., we have
$\tan A + \tan C = 2\tan B$… (1)
Or $x + \tan C = 2\tan B$… (2)
Where x = tan A. (From the given: x is tangent of the least or greatest angle)
[Observer that if tan A, tan B, tan C are in A.P. then tan A is either the greatest of the least amongst tan A, tan B and tan C].
Now in a triangle ABC, we always have
$\operatorname{Tan} A\operatorname{Tan} B\operatorname{Tan} C = \tan A + \tan B + \tan C$… (3)
$\therefore $From (1), (2) and (3), we obtain
${\text{x tanB}}\left( {2\tan B - x} \right) = 2\tan B + \tan B$
${\text{x }}\left( {2\tan B - x} \right) = 3$ [Hence tan B$ \ne $0]
$\therefore $Tan B = $\dfrac{{\left( {3 + {x^2}} \right)}}{{2x}}$
And Tan C = 2 Tan B – x
$ \Rightarrow 2 \times \dfrac{{\left( {3 + {x^2}} \right)}}{{2x}} - x$
$ \Rightarrow \dfrac{{\left( {3 + {x^2}} \right)}}{x} - x$
$ \Rightarrow \dfrac{3}{x} + x - x$$ = \dfrac{3}{x}$
Now in a triangle $\vartriangle $ABC, we have
$\dfrac{a}{{\sin A}} = \dfrac{b}{{\sin B}} = \dfrac{c}{{\sin C}}$ (Alternate Sine rule)
$$ \Rightarrow \dfrac{{{a^2}}}{{{{\sin }^2}A}} = \dfrac{{{b^2}}}{{{{\sin }^2}B}} = \dfrac{{{c^2}}}{{{{\sin }^2}C}}$$
Hence $${a^2}:{b^2}:{c^2} = {\sin ^2}A:{\sin ^2}B:{\sin ^2}C$$
But tan A = x $$ \Rightarrow \sin A = \dfrac{x}{{\sqrt {1 + {x^2}} }}$$ (Using the trigonometric ratios and Pythagoras theorem)
$ \Rightarrow {\sin ^2}A = \dfrac{{{x^2}}}{{1 + {x^2}}}$
And tan B = $\dfrac{{\left( {3 + {x^2}} \right)}}{{2x}}$$$ \Rightarrow \sin B = \dfrac{{3 + {x^2}}}{{\sqrt {{{\left( {3 + {x^2}} \right)}^2} + 4{x^2}} }}$$
$$ \Rightarrow {\sin ^2}B = \dfrac{{{{\left( {3 + {x^2}} \right)}^2}}}{{{{\left( {\sqrt {{{\left( {3 + {x^2}} \right)}^2} + 4{x^2}} } \right)}^2}}}$$
$$ \Rightarrow {\sin ^2}B = \dfrac{{{{\left( {3 + {x^2}} \right)}^2}}}{{{{\left( {3 + {x^2}} \right)}^2} + 4{x^2}}}$$
$$ \Rightarrow {\sin ^2}B = \dfrac{{{{\left( {3 + {x^2}} \right)}^2}}}{{\left( {9 + 6{x^2} + {x^4}} \right) + 4{x^2}}}$$
$$ \Rightarrow {\sin ^2}B = \dfrac{{{{\left( {3 + {x^2}} \right)}^2}}}{{\left( {9 + 10{x^2} + {x^4}} \right)}}$$
$$ \Rightarrow {\sin ^2}B = \dfrac{{{{\left( {3 + {x^2}} \right)}^2}}}{{\left( {1 + {x^2}} \right)\left( {9 + {x^2}} \right)}}$$
And tan C = $\dfrac{3}{x}$$$ \Rightarrow \sin C = \dfrac{3}{{\sqrt {\left( {9 + {x^2}} \right)} }}$$
$$ \Rightarrow {\sin ^2}C = \dfrac{9}{{9 + {x^2}}}$$
$$\therefore {a^2}:{b^2}:{c^2} = {\sin ^2}A:{\sin ^2}B:{\sin ^2}C$$
$\therefore {a^2}:{b^2}:{c^2}::\dfrac{{{x^2}}}{{1 + {x^2}}}:\dfrac{{{{\left( {3 + {x^2}} \right)}^2}}}{{\left( {1 + {x^2}} \right)\left( {9 + {x^2}} \right)}}:\dfrac{9}{{9 + {x^2}}}::{x^2}\left( {9 + {x^2}} \right):{(3 + {x^2})^2}:9(1 + {x^2}).$
Note: We have an ambiguous case here that is, when two sides say ‘a’ and ‘b’ are given and one angle opposite to these sides say A is given, then by sine rule$\dfrac{a}{{\sin A}} = \dfrac{b}{{\sin B}}$. Therefore$\sin B = \dfrac{b}{a}\sin A = k$, say. There will be two values of angle B say${B_1}$and${B_2}$ which will satisfy the equation$\sin B = k$. Evidently these two values are supplementary i.e. if${B_1} = \alpha $then${B_2} = \pi - \alpha $i.e. ${B_1} + {B_2} = \pi $.
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

What happens to glucose which enters nephron along class 10 biology CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Which of the following does not have a fundamental class 10 physics CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

