
If the tangent at the point \[P\left( {2,4} \right)\] to the parabola \[{y^2} = 8x\] meets the parabola \[{y^2} = 8x + 5\] at \[Q\] and \[R\], then the midpoint of \[QR\] is
A. \[\left( {2,4} \right)\]
B. \[\left( {4,2} \right)\]
C. \[\left( {7,9} \right)\]
D. None
Answer
595.2k+ views
- Hint: First of all, find the tangent of the parabola \[{y^2} = 8x\]. Then solve the formed tangent and the other parabola to find their points of intersection. And use the midpoint formula to find the required answer.
Complete step-by-step solution -
Given parabola: \[{y^2} = 8x..........................................\left( 1 \right)\]
\[{y^2} = 8x + 5..........................................\left( 2 \right)\]
We know that the tangent of the parabola \[{y^2} = 4ax\] at point \[\left( {{x_1},{y_1}} \right)\] is given by \[y{y_1} = 2a\left( {x + {x_1}} \right)\].
So, the tangent of the parabola \[{y^2} = 8x\] at point \[P\left( {2,4} \right)\] is
\[
4y = 2 \times 2\left( {x + 2} \right) \\
4y = 4\left( {x + 2} \right) \\
\therefore y = x + 2.................................................\left( 3 \right) \\
\]
Given the point of intersection of the tangent \[y = x + 2\] and the parabola \[{y^2} = 8x + 5\] are \[Q\] and \[R\].
By solving equation (2) and (3), we get the point of intersection i.e., \[Q\] and \[R\]
\[
\Rightarrow {\left( {x + 2} \right)^2} = 8x + 5 \\
\Rightarrow {x^2} + 4x + 4 = 8x + 5 \\
\Rightarrow {x^2} + 4x - 8x + 4 - 5 = 0 \\
\Rightarrow {x^2} - 4x - 1 = 0 \\
\]
We know that the roots of the quadratic equation \[a{x^2} + bx + c = 0\] is given by \[x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}\]
So, the roots of the equation \[{x^2} - 4x - 1 = 0\] is
\[
x = \dfrac{{4 \pm \sqrt {{4^2} - 4\left( 1 \right)\left( { - 1} \right)} }}{{2\left( 1 \right)}} \\
x = \dfrac{{4 \pm \sqrt {16 + 4} }}{2} \\
x = \dfrac{{4 \pm \sqrt {4 \times 5} }}{2} \\
x = \dfrac{{4 \pm 2\sqrt 5 }}{2} \\
\therefore x = 2 \pm \sqrt 5 \\
\]
From equation (3), if \[x = 2 - \sqrt 5 \] then \[y = 2 - \sqrt 5 + 2 = 4 - \sqrt 5 \]
From equation (3), if \[x = 2 + \sqrt 5 \] then \[y = 2 + \sqrt 5 + 2 = 4 + \sqrt 5 \]
So, the points of intersection are \[Q\left( {2 - \sqrt 5 ,4 - \sqrt 5 } \right){\text{ and }}R\left( {2 + \sqrt 5 ,4 + \sqrt 5 } \right)\]
Hence the midpoint of \[QR\] is
\[
\left( {\dfrac{{2 - \sqrt 5 + 2 + \sqrt 5 }}{2},\dfrac{{4 - \sqrt 5 + 4 + \sqrt 5 }}{2}} \right) \\
\left( {\dfrac{{2 + 2}}{2},\dfrac{{4 + 4}}{2}} \right) \\
\left( {\dfrac{4}{2},\dfrac{8}{2}} \right) \\
\left( {2,4} \right) \\
\]
Thus, the correct option is A. \[\left( {2,4} \right)\]
Note: The midpoints of the points \[\left( {{x_1},{y_1}} \right){\text{ and }}\left( {{x_2},{y_2}} \right)\] is given by \[\left( {\dfrac{{{x_1} + {x_2}}}{2},\dfrac{{{y_1} + {y_2}}}{2}} \right)\]. The roots of the quadratic equation \[a{x^2} + bx + c = 0\] is given by \[x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}\]. The transverse axis of both the given parabolas is x-axis.
Complete step-by-step solution -
Given parabola: \[{y^2} = 8x..........................................\left( 1 \right)\]
\[{y^2} = 8x + 5..........................................\left( 2 \right)\]
We know that the tangent of the parabola \[{y^2} = 4ax\] at point \[\left( {{x_1},{y_1}} \right)\] is given by \[y{y_1} = 2a\left( {x + {x_1}} \right)\].
So, the tangent of the parabola \[{y^2} = 8x\] at point \[P\left( {2,4} \right)\] is
\[
4y = 2 \times 2\left( {x + 2} \right) \\
4y = 4\left( {x + 2} \right) \\
\therefore y = x + 2.................................................\left( 3 \right) \\
\]
Given the point of intersection of the tangent \[y = x + 2\] and the parabola \[{y^2} = 8x + 5\] are \[Q\] and \[R\].
By solving equation (2) and (3), we get the point of intersection i.e., \[Q\] and \[R\]
\[
\Rightarrow {\left( {x + 2} \right)^2} = 8x + 5 \\
\Rightarrow {x^2} + 4x + 4 = 8x + 5 \\
\Rightarrow {x^2} + 4x - 8x + 4 - 5 = 0 \\
\Rightarrow {x^2} - 4x - 1 = 0 \\
\]
We know that the roots of the quadratic equation \[a{x^2} + bx + c = 0\] is given by \[x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}\]
So, the roots of the equation \[{x^2} - 4x - 1 = 0\] is
\[
x = \dfrac{{4 \pm \sqrt {{4^2} - 4\left( 1 \right)\left( { - 1} \right)} }}{{2\left( 1 \right)}} \\
x = \dfrac{{4 \pm \sqrt {16 + 4} }}{2} \\
x = \dfrac{{4 \pm \sqrt {4 \times 5} }}{2} \\
x = \dfrac{{4 \pm 2\sqrt 5 }}{2} \\
\therefore x = 2 \pm \sqrt 5 \\
\]
From equation (3), if \[x = 2 - \sqrt 5 \] then \[y = 2 - \sqrt 5 + 2 = 4 - \sqrt 5 \]
From equation (3), if \[x = 2 + \sqrt 5 \] then \[y = 2 + \sqrt 5 + 2 = 4 + \sqrt 5 \]
So, the points of intersection are \[Q\left( {2 - \sqrt 5 ,4 - \sqrt 5 } \right){\text{ and }}R\left( {2 + \sqrt 5 ,4 + \sqrt 5 } \right)\]
Hence the midpoint of \[QR\] is
\[
\left( {\dfrac{{2 - \sqrt 5 + 2 + \sqrt 5 }}{2},\dfrac{{4 - \sqrt 5 + 4 + \sqrt 5 }}{2}} \right) \\
\left( {\dfrac{{2 + 2}}{2},\dfrac{{4 + 4}}{2}} \right) \\
\left( {\dfrac{4}{2},\dfrac{8}{2}} \right) \\
\left( {2,4} \right) \\
\]
Thus, the correct option is A. \[\left( {2,4} \right)\]
Note: The midpoints of the points \[\left( {{x_1},{y_1}} \right){\text{ and }}\left( {{x_2},{y_2}} \right)\] is given by \[\left( {\dfrac{{{x_1} + {x_2}}}{2},\dfrac{{{y_1} + {y_2}}}{2}} \right)\]. The roots of the quadratic equation \[a{x^2} + bx + c = 0\] is given by \[x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}\]. The transverse axis of both the given parabolas is x-axis.
Recently Updated Pages
Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Draw a diagram of nephron and explain its structur class 11 biology CBSE

