
If the tangent at the point \[P\left( {2,4} \right)\] to the parabola \[{y^2} = 8x\] meets the parabola \[{y^2} = 8x + 5\] at \[Q\] and \[R\], then the midpoint of \[QR\] is
A. \[\left( {2,4} \right)\]
B. \[\left( {4,2} \right)\]
C. \[\left( {7,9} \right)\]
D. None
Answer
587.4k+ views
- Hint: First of all, find the tangent of the parabola \[{y^2} = 8x\]. Then solve the formed tangent and the other parabola to find their points of intersection. And use the midpoint formula to find the required answer.
Complete step-by-step solution -
Given parabola: \[{y^2} = 8x..........................................\left( 1 \right)\]
\[{y^2} = 8x + 5..........................................\left( 2 \right)\]
We know that the tangent of the parabola \[{y^2} = 4ax\] at point \[\left( {{x_1},{y_1}} \right)\] is given by \[y{y_1} = 2a\left( {x + {x_1}} \right)\].
So, the tangent of the parabola \[{y^2} = 8x\] at point \[P\left( {2,4} \right)\] is
\[
4y = 2 \times 2\left( {x + 2} \right) \\
4y = 4\left( {x + 2} \right) \\
\therefore y = x + 2.................................................\left( 3 \right) \\
\]
Given the point of intersection of the tangent \[y = x + 2\] and the parabola \[{y^2} = 8x + 5\] are \[Q\] and \[R\].
By solving equation (2) and (3), we get the point of intersection i.e., \[Q\] and \[R\]
\[
\Rightarrow {\left( {x + 2} \right)^2} = 8x + 5 \\
\Rightarrow {x^2} + 4x + 4 = 8x + 5 \\
\Rightarrow {x^2} + 4x - 8x + 4 - 5 = 0 \\
\Rightarrow {x^2} - 4x - 1 = 0 \\
\]
We know that the roots of the quadratic equation \[a{x^2} + bx + c = 0\] is given by \[x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}\]
So, the roots of the equation \[{x^2} - 4x - 1 = 0\] is
\[
x = \dfrac{{4 \pm \sqrt {{4^2} - 4\left( 1 \right)\left( { - 1} \right)} }}{{2\left( 1 \right)}} \\
x = \dfrac{{4 \pm \sqrt {16 + 4} }}{2} \\
x = \dfrac{{4 \pm \sqrt {4 \times 5} }}{2} \\
x = \dfrac{{4 \pm 2\sqrt 5 }}{2} \\
\therefore x = 2 \pm \sqrt 5 \\
\]
From equation (3), if \[x = 2 - \sqrt 5 \] then \[y = 2 - \sqrt 5 + 2 = 4 - \sqrt 5 \]
From equation (3), if \[x = 2 + \sqrt 5 \] then \[y = 2 + \sqrt 5 + 2 = 4 + \sqrt 5 \]
So, the points of intersection are \[Q\left( {2 - \sqrt 5 ,4 - \sqrt 5 } \right){\text{ and }}R\left( {2 + \sqrt 5 ,4 + \sqrt 5 } \right)\]
Hence the midpoint of \[QR\] is
\[
\left( {\dfrac{{2 - \sqrt 5 + 2 + \sqrt 5 }}{2},\dfrac{{4 - \sqrt 5 + 4 + \sqrt 5 }}{2}} \right) \\
\left( {\dfrac{{2 + 2}}{2},\dfrac{{4 + 4}}{2}} \right) \\
\left( {\dfrac{4}{2},\dfrac{8}{2}} \right) \\
\left( {2,4} \right) \\
\]
Thus, the correct option is A. \[\left( {2,4} \right)\]
Note: The midpoints of the points \[\left( {{x_1},{y_1}} \right){\text{ and }}\left( {{x_2},{y_2}} \right)\] is given by \[\left( {\dfrac{{{x_1} + {x_2}}}{2},\dfrac{{{y_1} + {y_2}}}{2}} \right)\]. The roots of the quadratic equation \[a{x^2} + bx + c = 0\] is given by \[x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}\]. The transverse axis of both the given parabolas is x-axis.
Complete step-by-step solution -
Given parabola: \[{y^2} = 8x..........................................\left( 1 \right)\]
\[{y^2} = 8x + 5..........................................\left( 2 \right)\]
We know that the tangent of the parabola \[{y^2} = 4ax\] at point \[\left( {{x_1},{y_1}} \right)\] is given by \[y{y_1} = 2a\left( {x + {x_1}} \right)\].
So, the tangent of the parabola \[{y^2} = 8x\] at point \[P\left( {2,4} \right)\] is
\[
4y = 2 \times 2\left( {x + 2} \right) \\
4y = 4\left( {x + 2} \right) \\
\therefore y = x + 2.................................................\left( 3 \right) \\
\]
Given the point of intersection of the tangent \[y = x + 2\] and the parabola \[{y^2} = 8x + 5\] are \[Q\] and \[R\].
By solving equation (2) and (3), we get the point of intersection i.e., \[Q\] and \[R\]
\[
\Rightarrow {\left( {x + 2} \right)^2} = 8x + 5 \\
\Rightarrow {x^2} + 4x + 4 = 8x + 5 \\
\Rightarrow {x^2} + 4x - 8x + 4 - 5 = 0 \\
\Rightarrow {x^2} - 4x - 1 = 0 \\
\]
We know that the roots of the quadratic equation \[a{x^2} + bx + c = 0\] is given by \[x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}\]
So, the roots of the equation \[{x^2} - 4x - 1 = 0\] is
\[
x = \dfrac{{4 \pm \sqrt {{4^2} - 4\left( 1 \right)\left( { - 1} \right)} }}{{2\left( 1 \right)}} \\
x = \dfrac{{4 \pm \sqrt {16 + 4} }}{2} \\
x = \dfrac{{4 \pm \sqrt {4 \times 5} }}{2} \\
x = \dfrac{{4 \pm 2\sqrt 5 }}{2} \\
\therefore x = 2 \pm \sqrt 5 \\
\]
From equation (3), if \[x = 2 - \sqrt 5 \] then \[y = 2 - \sqrt 5 + 2 = 4 - \sqrt 5 \]
From equation (3), if \[x = 2 + \sqrt 5 \] then \[y = 2 + \sqrt 5 + 2 = 4 + \sqrt 5 \]
So, the points of intersection are \[Q\left( {2 - \sqrt 5 ,4 - \sqrt 5 } \right){\text{ and }}R\left( {2 + \sqrt 5 ,4 + \sqrt 5 } \right)\]
Hence the midpoint of \[QR\] is
\[
\left( {\dfrac{{2 - \sqrt 5 + 2 + \sqrt 5 }}{2},\dfrac{{4 - \sqrt 5 + 4 + \sqrt 5 }}{2}} \right) \\
\left( {\dfrac{{2 + 2}}{2},\dfrac{{4 + 4}}{2}} \right) \\
\left( {\dfrac{4}{2},\dfrac{8}{2}} \right) \\
\left( {2,4} \right) \\
\]
Thus, the correct option is A. \[\left( {2,4} \right)\]
Note: The midpoints of the points \[\left( {{x_1},{y_1}} \right){\text{ and }}\left( {{x_2},{y_2}} \right)\] is given by \[\left( {\dfrac{{{x_1} + {x_2}}}{2},\dfrac{{{y_1} + {y_2}}}{2}} \right)\]. The roots of the quadratic equation \[a{x^2} + bx + c = 0\] is given by \[x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}\]. The transverse axis of both the given parabolas is x-axis.
Recently Updated Pages
Master Class 11 Chemistry: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

How many 5 digit telephone numbers can be constructed class 11 maths CBSE

Draw a well labelled diagram of reflex arc and explain class 11 biology CBSE

What is the difference between noise and music Can class 11 physics CBSE

Trending doubts
In what year Guru Nanak Dev ji was born A15 April 1469 class 11 social science CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

10 examples of friction in our daily life

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Write the differences between monocot plants and dicot class 11 biology CBSE

