
If the tangent at the point P on the circle ${x^2} + {y^2} + 6x + 6y = 2$ meets the straight line $5x - 2y + 6 = 0$ at a point $Q$ on the Y-axis, the length of PQ is-
A. 4
B. $2\sqrt 5 $
C. 5
D. $2\sqrt 5 $
Answer
594.6k+ views
Hint: We will find out the coordinates of the centre of the circle by comparing the given equation of the circle and the general equation of the circle. Using those coordinates, we will find out the radius of the circle.
Complete step by step answer:
The given equation of the circle by the question is-
$ \Rightarrow {x^2} + {y^2} + 6x + 6y = 2$
The general equation of a circle is-
$ \Rightarrow {x^2} + {y^2} + 2gx + 2fy + c = 0$
Comparing both the equations, we can find out the centre of the circle-
$ \Rightarrow C\left( { - g, - f} \right)$
$
\Rightarrow 2g = 6 \Rightarrow 3 \\
\\
\Rightarrow 2f = 6 \Rightarrow 3 \\
\\
\Rightarrow c = - 2 \\
$
Thus,
$
\Rightarrow C\left( { - g, - f} \right) \\
\\
\Rightarrow C\left( { - 3, - 3} \right) \\
$
The radius of the circle-
$
\Rightarrow r = \sqrt {{g^2} + {f^2} - c} \\
\\
\Rightarrow r = \sqrt {{3^2} + {3^2} + 2} \\
\\
\Rightarrow r = \sqrt {9 + 9 + 2} \\
\\
\Rightarrow r = 2\sqrt 5 \\
$
The equation of the line given is-
$
\Rightarrow 5x - 2y + 6 = 0 \\
\\
\Rightarrow 5x - 2y = - 6 \\
$
Changing this equation into intercept form by dividing both the sides of the equation by -6, we get-
$ \Rightarrow \dfrac{-5x}{6} + \dfrac{y}{3} = 1 $
Through this intercept form of the line, we get the coordinates of point Q (at Y axis) and the coordinates of point A (at X axis)-
$
\Rightarrow Q\left( {0,3} \right) \\
\\
\Rightarrow A\left( { - \dfrac{6}{5},0} \right) \\
$
Now, in triangle $\Delta OPQ$, we will apply Pythagoras theorem-
$ \Rightarrow O{Q^2} = O{P^2} + P{Q^2}$
Length of OQ will we calculated by the distance formula i.e. $O{Q^2} = {\left( {{x_2} - {x_1}} \right)^2} + {\left( {{y_2} - {y_1}} \right)^2}$-
$
\Rightarrow O{Q^2} = {\left( {{x_2} - {x_1}} \right)^2} + {\left( {{y_2} - {y_1}} \right)^2} \\
\\
\Rightarrow O{Q^2} = {\left( {0 + 3} \right)^2} + {\left( {3 + 3} \right)^2} \\
\\
\Rightarrow O{Q^2} = 45 \\
$
Putting this value in the Pythagoras theorem applied above, we get-
OP is the radius of the circle which is $2\sqrt 5 $-
$
\Rightarrow 45 = O{P^2} + P{Q^2} \\
\\
\Rightarrow 45 = {\left( {2\sqrt 5 } \right)^2} + P{Q^2} \\
\\
\Rightarrow 45 - 20 = P{Q^2} \\
\\
\Rightarrow P{Q^2} = 25 \\
\\
\Rightarrow PQ = 5 \\
$
Hence, the length of the tangent PQ is 5 units.
Note: Always remember to make figures in such types of questions as it makes the solution easy. Remember the general equations as they come in handy while comparing and getting the values/coordinates.
Complete step by step answer:
The given equation of the circle by the question is-
$ \Rightarrow {x^2} + {y^2} + 6x + 6y = 2$
The general equation of a circle is-
$ \Rightarrow {x^2} + {y^2} + 2gx + 2fy + c = 0$
Comparing both the equations, we can find out the centre of the circle-
$ \Rightarrow C\left( { - g, - f} \right)$
$
\Rightarrow 2g = 6 \Rightarrow 3 \\
\\
\Rightarrow 2f = 6 \Rightarrow 3 \\
\\
\Rightarrow c = - 2 \\
$
Thus,
$
\Rightarrow C\left( { - g, - f} \right) \\
\\
\Rightarrow C\left( { - 3, - 3} \right) \\
$
The radius of the circle-
$
\Rightarrow r = \sqrt {{g^2} + {f^2} - c} \\
\\
\Rightarrow r = \sqrt {{3^2} + {3^2} + 2} \\
\\
\Rightarrow r = \sqrt {9 + 9 + 2} \\
\\
\Rightarrow r = 2\sqrt 5 \\
$
The equation of the line given is-
$
\Rightarrow 5x - 2y + 6 = 0 \\
\\
\Rightarrow 5x - 2y = - 6 \\
$
Changing this equation into intercept form by dividing both the sides of the equation by -6, we get-
$ \Rightarrow \dfrac{-5x}{6} + \dfrac{y}{3} = 1 $
Through this intercept form of the line, we get the coordinates of point Q (at Y axis) and the coordinates of point A (at X axis)-
$
\Rightarrow Q\left( {0,3} \right) \\
\\
\Rightarrow A\left( { - \dfrac{6}{5},0} \right) \\
$
Now, in triangle $\Delta OPQ$, we will apply Pythagoras theorem-
$ \Rightarrow O{Q^2} = O{P^2} + P{Q^2}$
Length of OQ will we calculated by the distance formula i.e. $O{Q^2} = {\left( {{x_2} - {x_1}} \right)^2} + {\left( {{y_2} - {y_1}} \right)^2}$-
$
\Rightarrow O{Q^2} = {\left( {{x_2} - {x_1}} \right)^2} + {\left( {{y_2} - {y_1}} \right)^2} \\
\\
\Rightarrow O{Q^2} = {\left( {0 + 3} \right)^2} + {\left( {3 + 3} \right)^2} \\
\\
\Rightarrow O{Q^2} = 45 \\
$
Putting this value in the Pythagoras theorem applied above, we get-
OP is the radius of the circle which is $2\sqrt 5 $-
$
\Rightarrow 45 = O{P^2} + P{Q^2} \\
\\
\Rightarrow 45 = {\left( {2\sqrt 5 } \right)^2} + P{Q^2} \\
\\
\Rightarrow 45 - 20 = P{Q^2} \\
\\
\Rightarrow P{Q^2} = 25 \\
\\
\Rightarrow PQ = 5 \\
$
Hence, the length of the tangent PQ is 5 units.
Note: Always remember to make figures in such types of questions as it makes the solution easy. Remember the general equations as they come in handy while comparing and getting the values/coordinates.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

