
If the tangent at $ \left( {{x}_{1}},{{y}_{1}} \right) $ to the curve $ {{x}^{3}}+{{y}^{3}}={{a}^{3}} $ meets the curve again at $ \left( {{x}_{2}},{{y}_{2}} \right) $ , then
A. $ \dfrac{{{x}_{2}}}{{{x}_{1}}}+\dfrac{{{y}_{2}}}{{{y}_{1}}}=-1 $
B. $ \dfrac{{{x}_{2}}}{{{y}_{1}}}+\dfrac{{{x}_{1}}}{{{y}_{2}}}=-1 $
C. $ \dfrac{{{x}_{1}}}{{{x}_{2}}}+\dfrac{{{y}_{1}}}{{{y}_{2}}}=-1 $
D. $ \dfrac{{{x}_{2}}}{{{x}_{1}}}+\dfrac{{{y}_{2}}}{{{y}_{1}}}=1 $
Answer
527.7k+ views
Hint: We first find the slopes for the curve $ {{x}^{3}}+{{y}^{3}}={{a}^{3}} $ at $ \left( {{x}_{1}},{{y}_{1}} \right) $ which is same to the value of slope of the line joining the points $ \left( {{x}_{1}},{{y}_{1}} \right) $ and $ \left( {{x}_{2}},{{y}_{2}} \right) $ . We put the points $ \left( {{x}_{1}},{{y}_{1}} \right) $ and $ \left( {{x}_{2}},{{y}_{2}} \right) $ in the curve $ {{x}^{3}}+{{y}^{3}}={{a}^{3}} $ . We solve the equation from the relation.
Complete step-by-step answer:
The tangent at $ \left( {{x}_{1}},{{y}_{1}} \right) $ to the curve $ {{x}^{3}}+{{y}^{3}}={{a}^{3}} $ meets the curve again at $ \left( {{x}_{2}},{{y}_{2}} \right) $ .
The slope to the curve $ {{x}^{3}}+{{y}^{3}}={{a}^{3}} $ at $ \left( {{x}_{1}},{{y}_{1}} \right) $ will be same to the value of slope of the line joining the points $ \left( {{x}_{1}},{{y}_{1}} \right) $ and $ \left( {{x}_{2}},{{y}_{2}} \right) $ .
We first find slope to the curve $ {{x}^{3}}+{{y}^{3}}={{a}^{3}} $ at $ \left( {{x}_{1}},{{y}_{1}} \right) $ . We find derivatives of the curve $ {{x}^{3}}+{{y}^{3}}={{a}^{3}} $ .
$
\dfrac{d}{dx}\left( {{x}^{3}}+{{y}^{3}} \right)=\dfrac{d}{dx}\left( {{a}^{3}} \right) \\
\Rightarrow 3{{x}^{2}}+3{{y}^{2}}\dfrac{dy}{dx}=0 \\
$
Simplifying we get $ \dfrac{dy}{dx}=-\dfrac{{{x}^{2}}}{{{y}^{2}}} $ . At point $ \left( {{x}_{1}},{{y}_{1}} \right) $ will be $ {{\left[ \dfrac{dy}{dx} \right]}_{\left( {{x}_{1}},{{y}_{1}} \right)}}=-\dfrac{{{x}_{1}}^{2}}{{{y}_{1}}^{2}} $ .
Now the value of slope of the line joining the points $ \left( {{x}_{1}},{{y}_{1}} \right) $ and $ \left( {{x}_{2}},{{y}_{2}} \right) $ is $ \dfrac{{{y}_{2}}-{{y}_{1}}}{{{x}_{2}}-{{x}_{1}}} $ .
Considering the relation, we get $ \dfrac{{{y}_{2}}-{{y}_{1}}}{{{x}_{2}}-{{x}_{1}}}=-\dfrac{{{x}_{1}}^{2}}{{{y}_{1}}^{2}} $ . Now we have to simplify.
Both $ \left( {{x}_{1}},{{y}_{1}} \right) $ and $ \left( {{x}_{2}},{{y}_{2}} \right) $ goes through curve $ {{x}^{3}}+{{y}^{3}}={{a}^{3}} $ .
So, $ {{x}_{1}}^{3}+{{y}_{1}}^{3}={{a}^{3}} $ and $ {{x}_{2}}^{3}+{{y}_{2}}^{3}={{a}^{3}} $ .
Subtracting we get $ {{x}_{1}}^{3}-{{x}_{2}}^{3}={{y}_{2}}^{3}-{{y}_{1}}^{3} $ which gives \[\dfrac{{{y}_{2}}-{{y}_{1}}}{{{x}_{2}}-{{x}_{1}}}=-\dfrac{{{x}_{2}}^{2}+{{x}_{1}}^{2}+{{x}_{1}}{{x}_{2}}}{{{y}_{2}}^{2}+{{y}_{1}}^{2}+{{y}_{1}}{{y}_{2}}}\].
So, \[\dfrac{{{y}_{2}}-{{y}_{1}}}{{{x}_{2}}-{{x}_{1}}}=-\dfrac{{{x}_{1}}^{2}}{{{y}_{1}}^{2}}=-\dfrac{{{x}_{2}}^{2}+{{x}_{1}}^{2}+{{x}_{1}}{{x}_{2}}}{{{y}_{2}}^{2}+{{y}_{1}}^{2}+{{y}_{1}}{{y}_{2}}}\].
Simplifying we get
\[
{{x}_{1}}^{2}{{y}_{2}}^{2}+{{x}_{1}}^{2}{{y}_{1}}^{2}+{{x}_{1}}^{2}{{y}_{1}}{{y}_{2}}={{x}_{2}}^{2}{{y}_{1}}^{2}+{{x}_{1}}^{2}{{y}_{1}}^{2}+{{x}_{1}}{{x}_{2}}{{y}_{1}}^{2} \\
\Rightarrow {{x}_{1}}^{2}{{y}_{2}}^{2}-{{x}_{2}}^{2}{{y}_{1}}^{2}={{x}_{1}}{{x}_{2}}{{y}_{1}}^{2}-{{y}_{1}}{{y}_{2}}{{x}_{1}}^{2} \\
\Rightarrow {{\left( {{x}_{1}}{{y}_{2}} \right)}^{2}}-{{\left( {{x}_{2}}{{y}_{1}} \right)}^{2}}={{x}_{1}}{{y}_{1}}\left( {{x}_{2}}{{y}_{1}}-{{y}_{2}}{{x}_{1}} \right) \\
\]
Now we use the identity of $ {{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right) $ .
\[
{{\left( {{x}_{1}}{{y}_{2}} \right)}^{2}}-{{\left( {{x}_{2}}{{y}_{1}} \right)}^{2}}={{x}_{1}}{{y}_{1}}\left( {{x}_{2}}{{y}_{1}}-{{y}_{2}}{{x}_{1}} \right) \\
\Rightarrow \left( {{x}_{1}}{{y}_{2}}+{{y}_{1}}{{x}_{2}} \right)\left( {{x}_{1}}{{y}_{2}}-{{y}_{1}}{{x}_{2}} \right)={{x}_{1}}{{y}_{1}}\left( {{x}_{2}}{{y}_{1}}-{{y}_{2}}{{x}_{1}} \right) \\
\Rightarrow {{x}_{1}}{{y}_{2}}+{{x}_{2}}{{y}_{1}}=-{{x}_{1}}{{y}_{1}} \\
\Rightarrow \dfrac{{{x}_{2}}}{{{x}_{1}}}+\dfrac{{{y}_{2}}}{{{y}_{1}}}=-1 \\
\]
The correct option is A.
So, the correct answer is “Option A”.
Note: The slope of the curve $ {{x}^{3}}+{{y}^{3}}={{a}^{3}} $ at points $ \left( {{x}_{1}},{{y}_{1}} \right) $ and $ \left( {{x}_{2}},{{y}_{2}} \right) $ will not be same. So, we cannot equate them. We solve the slopes for the equations separately. The slopes are equal as the points $ \left( {{x}_{1}},{{y}_{1}} \right) $ and $ \left( {{x}_{2}},{{y}_{2}} \right) $ lies on the same line.
Complete step-by-step answer:
The tangent at $ \left( {{x}_{1}},{{y}_{1}} \right) $ to the curve $ {{x}^{3}}+{{y}^{3}}={{a}^{3}} $ meets the curve again at $ \left( {{x}_{2}},{{y}_{2}} \right) $ .
The slope to the curve $ {{x}^{3}}+{{y}^{3}}={{a}^{3}} $ at $ \left( {{x}_{1}},{{y}_{1}} \right) $ will be same to the value of slope of the line joining the points $ \left( {{x}_{1}},{{y}_{1}} \right) $ and $ \left( {{x}_{2}},{{y}_{2}} \right) $ .
We first find slope to the curve $ {{x}^{3}}+{{y}^{3}}={{a}^{3}} $ at $ \left( {{x}_{1}},{{y}_{1}} \right) $ . We find derivatives of the curve $ {{x}^{3}}+{{y}^{3}}={{a}^{3}} $ .
$
\dfrac{d}{dx}\left( {{x}^{3}}+{{y}^{3}} \right)=\dfrac{d}{dx}\left( {{a}^{3}} \right) \\
\Rightarrow 3{{x}^{2}}+3{{y}^{2}}\dfrac{dy}{dx}=0 \\
$
Simplifying we get $ \dfrac{dy}{dx}=-\dfrac{{{x}^{2}}}{{{y}^{2}}} $ . At point $ \left( {{x}_{1}},{{y}_{1}} \right) $ will be $ {{\left[ \dfrac{dy}{dx} \right]}_{\left( {{x}_{1}},{{y}_{1}} \right)}}=-\dfrac{{{x}_{1}}^{2}}{{{y}_{1}}^{2}} $ .
Now the value of slope of the line joining the points $ \left( {{x}_{1}},{{y}_{1}} \right) $ and $ \left( {{x}_{2}},{{y}_{2}} \right) $ is $ \dfrac{{{y}_{2}}-{{y}_{1}}}{{{x}_{2}}-{{x}_{1}}} $ .
Considering the relation, we get $ \dfrac{{{y}_{2}}-{{y}_{1}}}{{{x}_{2}}-{{x}_{1}}}=-\dfrac{{{x}_{1}}^{2}}{{{y}_{1}}^{2}} $ . Now we have to simplify.
Both $ \left( {{x}_{1}},{{y}_{1}} \right) $ and $ \left( {{x}_{2}},{{y}_{2}} \right) $ goes through curve $ {{x}^{3}}+{{y}^{3}}={{a}^{3}} $ .
So, $ {{x}_{1}}^{3}+{{y}_{1}}^{3}={{a}^{3}} $ and $ {{x}_{2}}^{3}+{{y}_{2}}^{3}={{a}^{3}} $ .
Subtracting we get $ {{x}_{1}}^{3}-{{x}_{2}}^{3}={{y}_{2}}^{3}-{{y}_{1}}^{3} $ which gives \[\dfrac{{{y}_{2}}-{{y}_{1}}}{{{x}_{2}}-{{x}_{1}}}=-\dfrac{{{x}_{2}}^{2}+{{x}_{1}}^{2}+{{x}_{1}}{{x}_{2}}}{{{y}_{2}}^{2}+{{y}_{1}}^{2}+{{y}_{1}}{{y}_{2}}}\].
So, \[\dfrac{{{y}_{2}}-{{y}_{1}}}{{{x}_{2}}-{{x}_{1}}}=-\dfrac{{{x}_{1}}^{2}}{{{y}_{1}}^{2}}=-\dfrac{{{x}_{2}}^{2}+{{x}_{1}}^{2}+{{x}_{1}}{{x}_{2}}}{{{y}_{2}}^{2}+{{y}_{1}}^{2}+{{y}_{1}}{{y}_{2}}}\].
Simplifying we get
\[
{{x}_{1}}^{2}{{y}_{2}}^{2}+{{x}_{1}}^{2}{{y}_{1}}^{2}+{{x}_{1}}^{2}{{y}_{1}}{{y}_{2}}={{x}_{2}}^{2}{{y}_{1}}^{2}+{{x}_{1}}^{2}{{y}_{1}}^{2}+{{x}_{1}}{{x}_{2}}{{y}_{1}}^{2} \\
\Rightarrow {{x}_{1}}^{2}{{y}_{2}}^{2}-{{x}_{2}}^{2}{{y}_{1}}^{2}={{x}_{1}}{{x}_{2}}{{y}_{1}}^{2}-{{y}_{1}}{{y}_{2}}{{x}_{1}}^{2} \\
\Rightarrow {{\left( {{x}_{1}}{{y}_{2}} \right)}^{2}}-{{\left( {{x}_{2}}{{y}_{1}} \right)}^{2}}={{x}_{1}}{{y}_{1}}\left( {{x}_{2}}{{y}_{1}}-{{y}_{2}}{{x}_{1}} \right) \\
\]
Now we use the identity of $ {{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right) $ .
\[
{{\left( {{x}_{1}}{{y}_{2}} \right)}^{2}}-{{\left( {{x}_{2}}{{y}_{1}} \right)}^{2}}={{x}_{1}}{{y}_{1}}\left( {{x}_{2}}{{y}_{1}}-{{y}_{2}}{{x}_{1}} \right) \\
\Rightarrow \left( {{x}_{1}}{{y}_{2}}+{{y}_{1}}{{x}_{2}} \right)\left( {{x}_{1}}{{y}_{2}}-{{y}_{1}}{{x}_{2}} \right)={{x}_{1}}{{y}_{1}}\left( {{x}_{2}}{{y}_{1}}-{{y}_{2}}{{x}_{1}} \right) \\
\Rightarrow {{x}_{1}}{{y}_{2}}+{{x}_{2}}{{y}_{1}}=-{{x}_{1}}{{y}_{1}} \\
\Rightarrow \dfrac{{{x}_{2}}}{{{x}_{1}}}+\dfrac{{{y}_{2}}}{{{y}_{1}}}=-1 \\
\]
The correct option is A.
So, the correct answer is “Option A”.
Note: The slope of the curve $ {{x}^{3}}+{{y}^{3}}={{a}^{3}} $ at points $ \left( {{x}_{1}},{{y}_{1}} \right) $ and $ \left( {{x}_{2}},{{y}_{2}} \right) $ will not be same. So, we cannot equate them. We solve the slopes for the equations separately. The slopes are equal as the points $ \left( {{x}_{1}},{{y}_{1}} \right) $ and $ \left( {{x}_{2}},{{y}_{2}} \right) $ lies on the same line.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

