
If the system is released, then the acceleration of the centre of mass of the system is
A. \[\dfrac{g}{4}\]
B. \[\dfrac{g}{2}\]
C. \[g\]
D. \[2g\]
Answer
561.9k+ views
Hint: In this question we have been asked to calculate the acceleration of centre of mass of the given pulley system. To solve this question, we shall first calculate the acceleration of the two blocks by using the equation of motion from the free body diagram. Later, using this result we shall calculate the acceleration of the centre of mass of the given system. Centre of mass is a point in space at which the whole mass of the system can be assumed to be concentrated.
Formula Used: \[{{a}_{c}}=\dfrac{{{m}_{1}}{{a}_{1}}-{{m}_{2}}{{a}_{2}}}{{{m}_{1}}+{{m}_{2}}}\]
Where,
\[{{a}_{c}}\] is the acceleration of centre of mass
\[{{m}_{1}}\] and \[{{m}_{2}}\] is the mass of the two blocks
\[{{a}_{1}}\] and \[{{a}_{2}}\] is the acceleration of blocks
Complete answer:
The FBD for the given pulley mass system will be as shown in the figure, below.
Therefore, from the above figure we can write,
\[T-mg=ma\] ……………… (1)
Similarly,
\[3mg-T=3ma\] …………….. (2)
Therefore, from (1) and (2)
We get,
\[2mg=4ma\]
Let us assume,
\[g=10\] ……………. (A)
Therefore,
\[a=5m/{{s}^{2}}\]
Now we know that, acceleration of centre of mass of system is given by,
\[{{a}_{c}}=\dfrac{{{m}_{1}}{{a}_{1}}-{{m}_{2}}{{a}_{2}}}{{{m}_{1}}+{{m}_{2}}}\]
Where,
\[{{a}_{1}}={{a}_{2}}=5\]
After substituting the values,
We get,
\[{{a}_{c}}=\dfrac{5\left( 3m-m \right)}{m+3m}\]
Therefore,
\[{{a}_{c}}=\dfrac{10}{4}\]
Now from (A) we can say that,
\[{{a}_{c}}=\dfrac{g}{4}\]
Therefore, the correct answer is option A.
Note:
The centre of mass can be calculated by taking the masses and multiplying them by their positions from the selected point of origin and dividing them by the total mass of the system. The centre of mass is a point on which the force is applied; it causes linear acceleration without an angular acceleration. The concept of centre of mass was introduced by Archimedes.
Formula Used: \[{{a}_{c}}=\dfrac{{{m}_{1}}{{a}_{1}}-{{m}_{2}}{{a}_{2}}}{{{m}_{1}}+{{m}_{2}}}\]
Where,
\[{{a}_{c}}\] is the acceleration of centre of mass
\[{{m}_{1}}\] and \[{{m}_{2}}\] is the mass of the two blocks
\[{{a}_{1}}\] and \[{{a}_{2}}\] is the acceleration of blocks
Complete answer:
The FBD for the given pulley mass system will be as shown in the figure, below.
Therefore, from the above figure we can write,
\[T-mg=ma\] ……………… (1)
Similarly,
\[3mg-T=3ma\] …………….. (2)
Therefore, from (1) and (2)
We get,
\[2mg=4ma\]
Let us assume,
\[g=10\] ……………. (A)
Therefore,
\[a=5m/{{s}^{2}}\]
Now we know that, acceleration of centre of mass of system is given by,
\[{{a}_{c}}=\dfrac{{{m}_{1}}{{a}_{1}}-{{m}_{2}}{{a}_{2}}}{{{m}_{1}}+{{m}_{2}}}\]
Where,
\[{{a}_{1}}={{a}_{2}}=5\]
After substituting the values,
We get,
\[{{a}_{c}}=\dfrac{5\left( 3m-m \right)}{m+3m}\]
Therefore,
\[{{a}_{c}}=\dfrac{10}{4}\]
Now from (A) we can say that,
\[{{a}_{c}}=\dfrac{g}{4}\]
Therefore, the correct answer is option A.
Note:
The centre of mass can be calculated by taking the masses and multiplying them by their positions from the selected point of origin and dividing them by the total mass of the system. The centre of mass is a point on which the force is applied; it causes linear acceleration without an angular acceleration. The concept of centre of mass was introduced by Archimedes.
Recently Updated Pages
Basicity of sulphurous acid and sulphuric acid are

Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Master Class 9 English: Engaging Questions & Answers for Success

Master Class 9 Science: Engaging Questions & Answers for Success

Class 9 Question and Answer - Your Ultimate Solutions Guide

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

