
If the sum of two unit vectors is a unit vector, then the magnitude of their difference is
a) $\sqrt{5}$ units
b) 2 units
c) $\sqrt{3}$ units
d) $\sqrt{5}$units
Answer
443.8k+ views
Hint: Let us assume that two unit vectors are $\overset{\to }{\mathop{a}}\,$ and $\overset{\to }{\mathop{b}}\,$, and the sum of both the unit vectors is also a unit vector say $\overset{\to }{\mathop{c}}\,$.
By using the vector sum formula: $\left| \overset{\to }{\mathop{r}}\, \right|=\sqrt{{{\left| \overset{\to }{\mathop{a}}\, \right|}^{2}}+{{\left| \overset{\to }{\mathop{b}}\, \right|}^{2}}+2\left| \overset{\to }{\mathop{a}}\, \right|\left| \overset{\to }{\mathop{b}}\, \right|\cos \theta }$, get the magnitude of resultant of addition of vectors $\overset{\to }{\mathop{a}}\,$ and $\overset{\to }{\mathop{b}}\,$.
It is given that the magnitude of the sum of unit vectors $\overset{\to }{\mathop{a}}\,$ and $\overset{\to }{\mathop{b}}\,$is also 1. So, put the value of resultant equal to 1 and get the value of $\cos \text{ }\!\!\theta\!\!\text{ }$.
Now substitute the value of $\cos \text{ }\!\!\theta\!\!\text{ }$ in the vector difference formula: $\left| \overset{\to }{\mathop{r}}\, \right|=\sqrt{{{\left| \overset{\to }{\mathop{a}}\, \right|}^{2}}+{{\left| \overset{\to }{\mathop{b}}\, \right|}^{2}}-2\left| \overset{\to }{\mathop{a}}\, \right|\left| \overset{\to }{\mathop{b}}\, \right|\cos \theta }$ and get the magnitude of difference of vectors $\overset{\to }{\mathop{a}}\,$ and $\overset{\to }{\mathop{b}}\,$.
Complete step by step answer:
Let us assume that two unit vectors are $\overset{\to }{\mathop{a}}\,$ and $\overset{\to }{\mathop{b}}\,$, and the sum of both the unit vectors is also a unit vector say $\overset{\to }{\mathop{c}}\,$.
Since, it is given that $\overset{\to }{\mathop{a}}\,$ , $\overset{\to }{\mathop{b}}\,$and $\overset{\to }{\mathop{c}}\,$ are unit vectors. Therefore, we can say that:
$\left| \overset{\to }{\mathop{a}}\, \right|=\left| \overset{\to }{\mathop{b}}\, \right|=\left| \overset{\to }{\mathop{c}}\, \right|=1......(1)$
Now, by using vector addition formula, we get magnitude of resultant of addition of two vectors as:
$\left| \overset{\to }{\mathop{r}}\, \right|=\sqrt{{{\left| \overset{\to }{\mathop{a}}\, \right|}^{2}}+{{\left| \overset{\to }{\mathop{b}}\, \right|}^{2}}+2\left| \overset{\to }{\mathop{a}}\, \right|\left| \overset{\to }{\mathop{b}}\, \right|\cos \theta }$
So, we can write that:
$\left| \overset{\to }{\mathop{c}}\, \right|=\sqrt{{{\left| \overset{\to }{\mathop{a}}\, \right|}^{2}}+{{\left| \overset{\to }{\mathop{b}}\, \right|}^{2}}+2\left| \overset{\to }{\mathop{a}}\, \right|\left| \overset{\to }{\mathop{b}}\, \right|\cos \theta }......(2)$
Since, we have $\left| \overset{\to }{\mathop{a}}\, \right|=\left| \overset{\to }{\mathop{b}}\, \right|=\left| \overset{\to }{\mathop{c}}\, \right|=1$, from equation (1), put the value in equation (2):
$\begin{align}
& \Rightarrow 1=\sqrt{1+1+2\cos \text{ }\!\!\theta\!\!\text{ }} \\
& \Rightarrow 1=2+2\cos \text{ }\!\!\theta\!\!\text{ } \\
& \Rightarrow 1=2\left( \cos \text{ }\!\!\theta\!\!\text{ }+1 \right) \\
& \Rightarrow \dfrac{1}{2}=\left( \cos \text{ }\!\!\theta\!\!\text{ }+1 \right) \\
& \Rightarrow \cos \text{ }\!\!\theta\!\!\text{ }=-\dfrac{1}{2}......(3) \\
\end{align}$
Now, we need to find the magnitude of difference of unit vectors $\overset{\to }{\mathop{a}}\,$ and $\overset{\to }{\mathop{b}}\,$. Let us assume that the difference of unit vectors $\overset{\to }{\mathop{a}}\,$ and $\overset{\to }{\mathop{b}}\,$is a vector $\left| \overset{\to }{\mathop{d}}\, \right|$.
By using the vector difference formula, we get the magnitude of difference of two vectors as:
$\left| \overset{\to }{\mathop{r}}\, \right|=\sqrt{{{\left| \overset{\to }{\mathop{a}}\, \right|}^{2}}+{{\left| \overset{\to }{\mathop{b}}\, \right|}^{2}}-2\left| \overset{\to }{\mathop{a}}\, \right|\left| \overset{\to }{\mathop{b}}\, \right|\cos \theta }$
So, we can write:
$\left| \overset{\to }{\mathop{d}}\, \right|=\sqrt{{{\left| \overset{\to }{\mathop{a}}\, \right|}^{2}}+{{\left| \overset{\to }{\mathop{b}}\, \right|}^{2}}-2\left| \overset{\to }{\mathop{a}}\, \right|\left| \overset{\to }{\mathop{b}}\, \right|\cos \theta }......(4)$
From equation (1) and (3) we have:
$\begin{align}
& \left| \overset{\to }{\mathop{a}}\, \right|=\left| \overset{\to }{\mathop{b}}\, \right|=1 \\
& \cos \text{ }\!\!\theta\!\!\text{ }=-\dfrac{1}{2} \\
\end{align}$
Put the values in equation (4), we have:
$\begin{align}
& \left| \overset{\to }{\mathop{d}}\, \right|=\sqrt{1+1-2\left( -\dfrac{1}{2} \right)} \\
& =\sqrt{3}
\end{align}$
Hence the magnitude of difference of two unit vectors is $\sqrt{3}$.
So, the correct answer is “Option C”.
Note: Never assume that the vector addition or subtraction is similar to algebraic addition or subtraction. Vectors do not obey the algebraic identities. So, remember the formulae for vector addition and subtraction.
By using the vector sum formula: $\left| \overset{\to }{\mathop{r}}\, \right|=\sqrt{{{\left| \overset{\to }{\mathop{a}}\, \right|}^{2}}+{{\left| \overset{\to }{\mathop{b}}\, \right|}^{2}}+2\left| \overset{\to }{\mathop{a}}\, \right|\left| \overset{\to }{\mathop{b}}\, \right|\cos \theta }$, get the magnitude of resultant of addition of vectors $\overset{\to }{\mathop{a}}\,$ and $\overset{\to }{\mathop{b}}\,$.
It is given that the magnitude of the sum of unit vectors $\overset{\to }{\mathop{a}}\,$ and $\overset{\to }{\mathop{b}}\,$is also 1. So, put the value of resultant equal to 1 and get the value of $\cos \text{ }\!\!\theta\!\!\text{ }$.
Now substitute the value of $\cos \text{ }\!\!\theta\!\!\text{ }$ in the vector difference formula: $\left| \overset{\to }{\mathop{r}}\, \right|=\sqrt{{{\left| \overset{\to }{\mathop{a}}\, \right|}^{2}}+{{\left| \overset{\to }{\mathop{b}}\, \right|}^{2}}-2\left| \overset{\to }{\mathop{a}}\, \right|\left| \overset{\to }{\mathop{b}}\, \right|\cos \theta }$ and get the magnitude of difference of vectors $\overset{\to }{\mathop{a}}\,$ and $\overset{\to }{\mathop{b}}\,$.
Complete step by step answer:
Let us assume that two unit vectors are $\overset{\to }{\mathop{a}}\,$ and $\overset{\to }{\mathop{b}}\,$, and the sum of both the unit vectors is also a unit vector say $\overset{\to }{\mathop{c}}\,$.
Since, it is given that $\overset{\to }{\mathop{a}}\,$ , $\overset{\to }{\mathop{b}}\,$and $\overset{\to }{\mathop{c}}\,$ are unit vectors. Therefore, we can say that:
$\left| \overset{\to }{\mathop{a}}\, \right|=\left| \overset{\to }{\mathop{b}}\, \right|=\left| \overset{\to }{\mathop{c}}\, \right|=1......(1)$
Now, by using vector addition formula, we get magnitude of resultant of addition of two vectors as:
$\left| \overset{\to }{\mathop{r}}\, \right|=\sqrt{{{\left| \overset{\to }{\mathop{a}}\, \right|}^{2}}+{{\left| \overset{\to }{\mathop{b}}\, \right|}^{2}}+2\left| \overset{\to }{\mathop{a}}\, \right|\left| \overset{\to }{\mathop{b}}\, \right|\cos \theta }$
So, we can write that:
$\left| \overset{\to }{\mathop{c}}\, \right|=\sqrt{{{\left| \overset{\to }{\mathop{a}}\, \right|}^{2}}+{{\left| \overset{\to }{\mathop{b}}\, \right|}^{2}}+2\left| \overset{\to }{\mathop{a}}\, \right|\left| \overset{\to }{\mathop{b}}\, \right|\cos \theta }......(2)$
Since, we have $\left| \overset{\to }{\mathop{a}}\, \right|=\left| \overset{\to }{\mathop{b}}\, \right|=\left| \overset{\to }{\mathop{c}}\, \right|=1$, from equation (1), put the value in equation (2):
$\begin{align}
& \Rightarrow 1=\sqrt{1+1+2\cos \text{ }\!\!\theta\!\!\text{ }} \\
& \Rightarrow 1=2+2\cos \text{ }\!\!\theta\!\!\text{ } \\
& \Rightarrow 1=2\left( \cos \text{ }\!\!\theta\!\!\text{ }+1 \right) \\
& \Rightarrow \dfrac{1}{2}=\left( \cos \text{ }\!\!\theta\!\!\text{ }+1 \right) \\
& \Rightarrow \cos \text{ }\!\!\theta\!\!\text{ }=-\dfrac{1}{2}......(3) \\
\end{align}$
Now, we need to find the magnitude of difference of unit vectors $\overset{\to }{\mathop{a}}\,$ and $\overset{\to }{\mathop{b}}\,$. Let us assume that the difference of unit vectors $\overset{\to }{\mathop{a}}\,$ and $\overset{\to }{\mathop{b}}\,$is a vector $\left| \overset{\to }{\mathop{d}}\, \right|$.
By using the vector difference formula, we get the magnitude of difference of two vectors as:
$\left| \overset{\to }{\mathop{r}}\, \right|=\sqrt{{{\left| \overset{\to }{\mathop{a}}\, \right|}^{2}}+{{\left| \overset{\to }{\mathop{b}}\, \right|}^{2}}-2\left| \overset{\to }{\mathop{a}}\, \right|\left| \overset{\to }{\mathop{b}}\, \right|\cos \theta }$
So, we can write:
$\left| \overset{\to }{\mathop{d}}\, \right|=\sqrt{{{\left| \overset{\to }{\mathop{a}}\, \right|}^{2}}+{{\left| \overset{\to }{\mathop{b}}\, \right|}^{2}}-2\left| \overset{\to }{\mathop{a}}\, \right|\left| \overset{\to }{\mathop{b}}\, \right|\cos \theta }......(4)$
From equation (1) and (3) we have:
$\begin{align}
& \left| \overset{\to }{\mathop{a}}\, \right|=\left| \overset{\to }{\mathop{b}}\, \right|=1 \\
& \cos \text{ }\!\!\theta\!\!\text{ }=-\dfrac{1}{2} \\
\end{align}$
Put the values in equation (4), we have:
$\begin{align}
& \left| \overset{\to }{\mathop{d}}\, \right|=\sqrt{1+1-2\left( -\dfrac{1}{2} \right)} \\
& =\sqrt{3}
\end{align}$
Hence the magnitude of difference of two unit vectors is $\sqrt{3}$.
So, the correct answer is “Option C”.
Note: Never assume that the vector addition or subtraction is similar to algebraic addition or subtraction. Vectors do not obey the algebraic identities. So, remember the formulae for vector addition and subtraction.
Recently Updated Pages
Master Class 12 Biology: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Trending doubts
Father of Indian ecology is a Prof R Misra b GS Puri class 12 biology CBSE

Who is considered as the Father of Ecology in India class 12 biology CBSE

Enzymes with heme as prosthetic group are a Catalase class 12 biology CBSE

Which are the Top 10 Largest Countries of the World?

An example of ex situ conservation is a Sacred grove class 12 biology CBSE

Why is insulin not administered orally to a diabetic class 12 biology CBSE
