
If the sum of the infinity of the series \[3 + 5r + 7{r^2} + ......\]is \[\dfrac{{44}}{9}\] , find the value of r.
Answer
577.2k+ views
Hint: Here we need to take help of geometric progression and infinite series together.
1. .Sn=\[\left( {\dfrac{a}{{1 - r}}} \right)\]
After forming a quadratic equation use the given formula for finding root.
2. \[\dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}\]
Complete step-by-step answer:
Let the sum given is denoted by letter s.
\[s = 3 + 5r + 7{r^2} + ......\]
\[rs = 3r + 5{r^2} + 7{r^3} + ......\] multiplying both sides by r.
\[s - rs = 3 + 2r + 2{r^2} + 2{r^3} + ....\] subtracting the two series.
\[s(1 - r) = 3 + 2(r + {r^2} + {r^3} + .....)\] taking s common on left side and r common on right side
\[
s(1 - r) = 1 + 2 + 2(r + {r^2} + {r^3} + .....) \\
s(1 - r) = 1 + 2(1 + r + {r^2} + {r^3} + .....) \\
\]
Now the series \[1 + r + {r^2} + {r^3} + .....\] is a geometric progression.
Thus, sum of terms in a G.P. is given by $s_n$=\[\left( {\dfrac{a}{{1 - r}}} \right)\]
\[
\Rightarrow s(1 - r) = 1 + 2\left( {\dfrac{a}{{1 - r}}} \right) \\
\Rightarrow s(1 - r) = 1 + 2\left( {\dfrac{1}{{1 - r}}} \right) \\
\]
\[s(1 - r) = \dfrac{{1 - r + 2}}{{1 - r}}\] taking L.C.M.on right side
\[s{(1 - r)^2} = 3 - r\]
\[s(1 - 2r + {r^2}) = 3 - r\]
\[\dfrac{{44}}{9}(1 - 2r + {r^2}) = 3 - r\] substitute value of s.
\[
\Rightarrow 44(1 - 2r + {r^2}) = 9(3 - r) \\
\Rightarrow 44 - 88r + 44{r^2} = 27 - 9r \\
\Rightarrow 44{r^2} - 88r + 9r + 44 - 27 = 0 \\
\Rightarrow 44{r^2} - 79r + 17 = 0 \\
\]
Now this equation is in quadratic equation form \[a{x^2} + bx + c = 0\] having roots to be found using
formula \[\dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}\].
Here a=44,b=-79 and c=17.putting the values,
\[
\Rightarrow r = \dfrac{{ - ( - 79) \pm \sqrt {{{( - 79)}^2} - 4 \times 44 \times 17} }}{{2 \times 44}} \\
\Rightarrow r = \dfrac{{79 \pm \sqrt {6241 - 2992} }}{{88}} \\
\Rightarrow r = \dfrac{{79 \pm \sqrt {3249} }}{{88}} \\
\Rightarrow r = \dfrac{{79 \pm 57}}{{88}} \\
\Rightarrow r = \dfrac{{79 + 57}}{{88}},\dfrac{{79 - 57}}{{88}} \\
\Rightarrow r = \dfrac{{136}}{{88}},\dfrac{{22}}{{88}} \\
\Rightarrow r = \dfrac{{17}}{{11}},\dfrac{1}{4} \\
\]
Thus, we found two values of r=\[\dfrac{{17}}{{11}},\dfrac{1}{4}\].
Note: Since the given series is not a G.P. we need to convert it using some mathematical operations
A geometric series is of the form \[a + ar + a{r^2} + a{r^3} + ......\].
1. .Sn=\[\left( {\dfrac{a}{{1 - r}}} \right)\]
After forming a quadratic equation use the given formula for finding root.
2. \[\dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}\]
Complete step-by-step answer:
Let the sum given is denoted by letter s.
\[s = 3 + 5r + 7{r^2} + ......\]
\[rs = 3r + 5{r^2} + 7{r^3} + ......\] multiplying both sides by r.
\[s - rs = 3 + 2r + 2{r^2} + 2{r^3} + ....\] subtracting the two series.
\[s(1 - r) = 3 + 2(r + {r^2} + {r^3} + .....)\] taking s common on left side and r common on right side
\[
s(1 - r) = 1 + 2 + 2(r + {r^2} + {r^3} + .....) \\
s(1 - r) = 1 + 2(1 + r + {r^2} + {r^3} + .....) \\
\]
Now the series \[1 + r + {r^2} + {r^3} + .....\] is a geometric progression.
Thus, sum of terms in a G.P. is given by $s_n$=\[\left( {\dfrac{a}{{1 - r}}} \right)\]
\[
\Rightarrow s(1 - r) = 1 + 2\left( {\dfrac{a}{{1 - r}}} \right) \\
\Rightarrow s(1 - r) = 1 + 2\left( {\dfrac{1}{{1 - r}}} \right) \\
\]
\[s(1 - r) = \dfrac{{1 - r + 2}}{{1 - r}}\] taking L.C.M.on right side
\[s{(1 - r)^2} = 3 - r\]
\[s(1 - 2r + {r^2}) = 3 - r\]
\[\dfrac{{44}}{9}(1 - 2r + {r^2}) = 3 - r\] substitute value of s.
\[
\Rightarrow 44(1 - 2r + {r^2}) = 9(3 - r) \\
\Rightarrow 44 - 88r + 44{r^2} = 27 - 9r \\
\Rightarrow 44{r^2} - 88r + 9r + 44 - 27 = 0 \\
\Rightarrow 44{r^2} - 79r + 17 = 0 \\
\]
Now this equation is in quadratic equation form \[a{x^2} + bx + c = 0\] having roots to be found using
formula \[\dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}\].
Here a=44,b=-79 and c=17.putting the values,
\[
\Rightarrow r = \dfrac{{ - ( - 79) \pm \sqrt {{{( - 79)}^2} - 4 \times 44 \times 17} }}{{2 \times 44}} \\
\Rightarrow r = \dfrac{{79 \pm \sqrt {6241 - 2992} }}{{88}} \\
\Rightarrow r = \dfrac{{79 \pm \sqrt {3249} }}{{88}} \\
\Rightarrow r = \dfrac{{79 \pm 57}}{{88}} \\
\Rightarrow r = \dfrac{{79 + 57}}{{88}},\dfrac{{79 - 57}}{{88}} \\
\Rightarrow r = \dfrac{{136}}{{88}},\dfrac{{22}}{{88}} \\
\Rightarrow r = \dfrac{{17}}{{11}},\dfrac{1}{4} \\
\]
Thus, we found two values of r=\[\dfrac{{17}}{{11}},\dfrac{1}{4}\].
Note: Since the given series is not a G.P. we need to convert it using some mathematical operations
A geometric series is of the form \[a + ar + a{r^2} + a{r^3} + ......\].
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

