
If the sum of the infinity of the series \[3 + 5r + 7{r^2} + ......\]is \[\dfrac{{44}}{9}\] , find the value of r.
Answer
511.8k+ views
Hint: Here we need to take help of geometric progression and infinite series together.
1. .Sn=\[\left( {\dfrac{a}{{1 - r}}} \right)\]
After forming a quadratic equation use the given formula for finding root.
2. \[\dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}\]
Complete step-by-step answer:
Let the sum given is denoted by letter s.
\[s = 3 + 5r + 7{r^2} + ......\]
\[rs = 3r + 5{r^2} + 7{r^3} + ......\] multiplying both sides by r.
\[s - rs = 3 + 2r + 2{r^2} + 2{r^3} + ....\] subtracting the two series.
\[s(1 - r) = 3 + 2(r + {r^2} + {r^3} + .....)\] taking s common on left side and r common on right side
\[
s(1 - r) = 1 + 2 + 2(r + {r^2} + {r^3} + .....) \\
s(1 - r) = 1 + 2(1 + r + {r^2} + {r^3} + .....) \\
\]
Now the series \[1 + r + {r^2} + {r^3} + .....\] is a geometric progression.
Thus, sum of terms in a G.P. is given by $s_n$=\[\left( {\dfrac{a}{{1 - r}}} \right)\]
\[
\Rightarrow s(1 - r) = 1 + 2\left( {\dfrac{a}{{1 - r}}} \right) \\
\Rightarrow s(1 - r) = 1 + 2\left( {\dfrac{1}{{1 - r}}} \right) \\
\]
\[s(1 - r) = \dfrac{{1 - r + 2}}{{1 - r}}\] taking L.C.M.on right side
\[s{(1 - r)^2} = 3 - r\]
\[s(1 - 2r + {r^2}) = 3 - r\]
\[\dfrac{{44}}{9}(1 - 2r + {r^2}) = 3 - r\] substitute value of s.
\[
\Rightarrow 44(1 - 2r + {r^2}) = 9(3 - r) \\
\Rightarrow 44 - 88r + 44{r^2} = 27 - 9r \\
\Rightarrow 44{r^2} - 88r + 9r + 44 - 27 = 0 \\
\Rightarrow 44{r^2} - 79r + 17 = 0 \\
\]
Now this equation is in quadratic equation form \[a{x^2} + bx + c = 0\] having roots to be found using
formula \[\dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}\].
Here a=44,b=-79 and c=17.putting the values,
\[
\Rightarrow r = \dfrac{{ - ( - 79) \pm \sqrt {{{( - 79)}^2} - 4 \times 44 \times 17} }}{{2 \times 44}} \\
\Rightarrow r = \dfrac{{79 \pm \sqrt {6241 - 2992} }}{{88}} \\
\Rightarrow r = \dfrac{{79 \pm \sqrt {3249} }}{{88}} \\
\Rightarrow r = \dfrac{{79 \pm 57}}{{88}} \\
\Rightarrow r = \dfrac{{79 + 57}}{{88}},\dfrac{{79 - 57}}{{88}} \\
\Rightarrow r = \dfrac{{136}}{{88}},\dfrac{{22}}{{88}} \\
\Rightarrow r = \dfrac{{17}}{{11}},\dfrac{1}{4} \\
\]
Thus, we found two values of r=\[\dfrac{{17}}{{11}},\dfrac{1}{4}\].
Note: Since the given series is not a G.P. we need to convert it using some mathematical operations
A geometric series is of the form \[a + ar + a{r^2} + a{r^3} + ......\].
1. .Sn=\[\left( {\dfrac{a}{{1 - r}}} \right)\]
After forming a quadratic equation use the given formula for finding root.
2. \[\dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}\]
Complete step-by-step answer:
Let the sum given is denoted by letter s.
\[s = 3 + 5r + 7{r^2} + ......\]
\[rs = 3r + 5{r^2} + 7{r^3} + ......\] multiplying both sides by r.
\[s - rs = 3 + 2r + 2{r^2} + 2{r^3} + ....\] subtracting the two series.
\[s(1 - r) = 3 + 2(r + {r^2} + {r^3} + .....)\] taking s common on left side and r common on right side
\[
s(1 - r) = 1 + 2 + 2(r + {r^2} + {r^3} + .....) \\
s(1 - r) = 1 + 2(1 + r + {r^2} + {r^3} + .....) \\
\]
Now the series \[1 + r + {r^2} + {r^3} + .....\] is a geometric progression.
Thus, sum of terms in a G.P. is given by $s_n$=\[\left( {\dfrac{a}{{1 - r}}} \right)\]
\[
\Rightarrow s(1 - r) = 1 + 2\left( {\dfrac{a}{{1 - r}}} \right) \\
\Rightarrow s(1 - r) = 1 + 2\left( {\dfrac{1}{{1 - r}}} \right) \\
\]
\[s(1 - r) = \dfrac{{1 - r + 2}}{{1 - r}}\] taking L.C.M.on right side
\[s{(1 - r)^2} = 3 - r\]
\[s(1 - 2r + {r^2}) = 3 - r\]
\[\dfrac{{44}}{9}(1 - 2r + {r^2}) = 3 - r\] substitute value of s.
\[
\Rightarrow 44(1 - 2r + {r^2}) = 9(3 - r) \\
\Rightarrow 44 - 88r + 44{r^2} = 27 - 9r \\
\Rightarrow 44{r^2} - 88r + 9r + 44 - 27 = 0 \\
\Rightarrow 44{r^2} - 79r + 17 = 0 \\
\]
Now this equation is in quadratic equation form \[a{x^2} + bx + c = 0\] having roots to be found using
formula \[\dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}\].
Here a=44,b=-79 and c=17.putting the values,
\[
\Rightarrow r = \dfrac{{ - ( - 79) \pm \sqrt {{{( - 79)}^2} - 4 \times 44 \times 17} }}{{2 \times 44}} \\
\Rightarrow r = \dfrac{{79 \pm \sqrt {6241 - 2992} }}{{88}} \\
\Rightarrow r = \dfrac{{79 \pm \sqrt {3249} }}{{88}} \\
\Rightarrow r = \dfrac{{79 \pm 57}}{{88}} \\
\Rightarrow r = \dfrac{{79 + 57}}{{88}},\dfrac{{79 - 57}}{{88}} \\
\Rightarrow r = \dfrac{{136}}{{88}},\dfrac{{22}}{{88}} \\
\Rightarrow r = \dfrac{{17}}{{11}},\dfrac{1}{4} \\
\]
Thus, we found two values of r=\[\dfrac{{17}}{{11}},\dfrac{1}{4}\].
Note: Since the given series is not a G.P. we need to convert it using some mathematical operations
A geometric series is of the form \[a + ar + a{r^2} + a{r^3} + ......\].
Recently Updated Pages
Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Trending doubts
Explain why it is said like that Mock drill is use class 11 social science CBSE

Which of the following blood vessels in the circulatory class 11 biology CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Which one is a true fish A Jellyfish B Starfish C Dogfish class 11 biology CBSE
