
If the sum of the angles A, B and C is given by
$A+B+C={{180}^{\circ }}$
Then prove that
$\tan \left( \dfrac{A}{2} \right)\tan \left( \dfrac{B}{2} \right)+\tan \left( \dfrac{B}{2} \right)\tan \left( \dfrac{C}{2} \right)+\tan \left( \dfrac{C}{2} \right)\tan \left( \dfrac{A}{2} \right)=1$
Answer
516k+ views
Hint:In this question, the sum of the angles is given and we have to find the relation between the tangents of these angles. Also, we can $\tan \dfrac{C}{2}$common from the last two terms, express the angle $\dfrac{C}{2}$ in terms of the angle A and B, and then use the formula for tangent of sum of angles to obtain the expression given in the question.
Complete step-by-step answer:
In the question, the sum of the three angles A, B and C is given to be
$A+B+C=\pi $
Therefore,
$\dfrac{A}{2}+\dfrac{B}{2}=\dfrac{\pi }{2}-\dfrac{C}{2}={{90}^{\circ }}-\dfrac{C}{2}..............(1.1)$
The left hand side of the equation is
$LHS=\tan \left( \dfrac{A}{2} \right)\tan \left( \dfrac{B}{2} \right)+\tan \left( \dfrac{B}{2} \right)\tan \left( \dfrac{C}{2} \right)+\tan \left( \dfrac{C}{2} \right)\tan \left( \dfrac{A}{2} \right)$
Taking $\tan \left( \dfrac{C}{2} \right)$ common from the last two terms, we obtain
$LHS=\tan \left( \dfrac{A}{2} \right)\tan \left( \dfrac{B}{2} \right)+\tan \left( \dfrac{C}{2} \right)\left( \tan \left( \dfrac{B}{2} \right)+\tan \left( \dfrac{A}{2} \right) \right)........(1.2)$
Now, the formula for tangent of sum of two angles is given by
$\begin{align}
& \tan \left( a+b \right)=\dfrac{\tan (a)+\tan (b)}{1-\tan (a)\tan (b)} \\
& \Rightarrow \tan (a)+\tan (b)=\tan \left( a+b \right)\left( 1-\tan (a)\tan (b) \right).......(1.4) \\
\end{align}$
Using equation (1.4) in equation (1.2), by taking a=A and b=B, we get
$LHS=\tan \left( \dfrac{A}{2} \right)\tan \left( \dfrac{B}{2} \right)+\tan \left( \dfrac{C}{2} \right)\tan \left( \dfrac{A+B}{2} \right)\left( 1-\tan \left( \dfrac{A}{2} \right)\tan \left( \dfrac{B}{2} \right) \right)........(1.5)$
Now, the tangent of ${{90}^{\circ }}$ minus some angle should be equal to cotangent of the angle. Therefore,
$\tan \left( {{90}^{\circ }}-\theta \right)=\cot \left( \theta \right)=\dfrac{1}{\tan \left( \theta \right)}........(1.6)$
Now, using equation (1.1) in equation (1.6), we get
$\tan \left( \dfrac{A+B}{2} \right)=\tan \left( {{90}^{\circ }}-\dfrac{C}{2} \right)=\dfrac{1}{\tan \left( \dfrac{C}{2} \right)}........(1.7)$
Using equation (1.7), we obtain
$\begin{align}
& LHS=\tan \left( \dfrac{A}{2} \right)\tan \left( \dfrac{B}{2} \right)+\tan \left( \dfrac{C}{2} \right)\dfrac{1}{\tan \left( \dfrac{C}{2} \right)}\left( 1-\tan \left( \dfrac{A}{2} \right)\tan \left( \dfrac{B}{2} \right) \right) \\
& =\tan \left( \dfrac{A}{2} \right)\tan \left( \dfrac{B}{2} \right)+1-\tan \left( \dfrac{A}{2} \right)\tan \left( \dfrac{B}{2} \right) \\
& =1........................(1.8) \\
\end{align}$
Thus, from equation (1.8), we have proved that
$LHS=\tan \left( \dfrac{A}{2} \right)\tan \left( \dfrac{B}{2} \right)+\tan \left( \dfrac{B}{2} \right)\tan \left( \dfrac{C}{2} \right)+\tan \left( \dfrac{C}{2} \right)\tan \left( \dfrac{A}{2} \right)=1=RHS$
Which was asked in the question.
Note: In this question, we could also have taken $\tan \left( \dfrac{B}{2} \right)$ common from the first two terms and then used equation (1.4) for the angles $\dfrac{A}{2}$ and $\dfrac{C}{2}$. However, the final result would still remain the same.
Complete step-by-step answer:
In the question, the sum of the three angles A, B and C is given to be
$A+B+C=\pi $
Therefore,
$\dfrac{A}{2}+\dfrac{B}{2}=\dfrac{\pi }{2}-\dfrac{C}{2}={{90}^{\circ }}-\dfrac{C}{2}..............(1.1)$
The left hand side of the equation is
$LHS=\tan \left( \dfrac{A}{2} \right)\tan \left( \dfrac{B}{2} \right)+\tan \left( \dfrac{B}{2} \right)\tan \left( \dfrac{C}{2} \right)+\tan \left( \dfrac{C}{2} \right)\tan \left( \dfrac{A}{2} \right)$
Taking $\tan \left( \dfrac{C}{2} \right)$ common from the last two terms, we obtain
$LHS=\tan \left( \dfrac{A}{2} \right)\tan \left( \dfrac{B}{2} \right)+\tan \left( \dfrac{C}{2} \right)\left( \tan \left( \dfrac{B}{2} \right)+\tan \left( \dfrac{A}{2} \right) \right)........(1.2)$
Now, the formula for tangent of sum of two angles is given by
$\begin{align}
& \tan \left( a+b \right)=\dfrac{\tan (a)+\tan (b)}{1-\tan (a)\tan (b)} \\
& \Rightarrow \tan (a)+\tan (b)=\tan \left( a+b \right)\left( 1-\tan (a)\tan (b) \right).......(1.4) \\
\end{align}$
Using equation (1.4) in equation (1.2), by taking a=A and b=B, we get
$LHS=\tan \left( \dfrac{A}{2} \right)\tan \left( \dfrac{B}{2} \right)+\tan \left( \dfrac{C}{2} \right)\tan \left( \dfrac{A+B}{2} \right)\left( 1-\tan \left( \dfrac{A}{2} \right)\tan \left( \dfrac{B}{2} \right) \right)........(1.5)$
Now, the tangent of ${{90}^{\circ }}$ minus some angle should be equal to cotangent of the angle. Therefore,
$\tan \left( {{90}^{\circ }}-\theta \right)=\cot \left( \theta \right)=\dfrac{1}{\tan \left( \theta \right)}........(1.6)$
Now, using equation (1.1) in equation (1.6), we get
$\tan \left( \dfrac{A+B}{2} \right)=\tan \left( {{90}^{\circ }}-\dfrac{C}{2} \right)=\dfrac{1}{\tan \left( \dfrac{C}{2} \right)}........(1.7)$
Using equation (1.7), we obtain
$\begin{align}
& LHS=\tan \left( \dfrac{A}{2} \right)\tan \left( \dfrac{B}{2} \right)+\tan \left( \dfrac{C}{2} \right)\dfrac{1}{\tan \left( \dfrac{C}{2} \right)}\left( 1-\tan \left( \dfrac{A}{2} \right)\tan \left( \dfrac{B}{2} \right) \right) \\
& =\tan \left( \dfrac{A}{2} \right)\tan \left( \dfrac{B}{2} \right)+1-\tan \left( \dfrac{A}{2} \right)\tan \left( \dfrac{B}{2} \right) \\
& =1........................(1.8) \\
\end{align}$
Thus, from equation (1.8), we have proved that
$LHS=\tan \left( \dfrac{A}{2} \right)\tan \left( \dfrac{B}{2} \right)+\tan \left( \dfrac{B}{2} \right)\tan \left( \dfrac{C}{2} \right)+\tan \left( \dfrac{C}{2} \right)\tan \left( \dfrac{A}{2} \right)=1=RHS$
Which was asked in the question.
Note: In this question, we could also have taken $\tan \left( \dfrac{B}{2} \right)$ common from the first two terms and then used equation (1.4) for the angles $\dfrac{A}{2}$ and $\dfrac{C}{2}$. However, the final result would still remain the same.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Trending doubts
Is Cellular respiration an Oxidation or Reduction class 11 chemistry CBSE

In electron dot structure the valence shell electrons class 11 chemistry CBSE

What is the Pitti Island famous for ABird Sanctuary class 11 social science CBSE

State the laws of reflection of light

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE
