
If the straight lines $2x + 3y - 1 = 0,x + 2y - 1 = 0,$ and $ax + by - 1 = 0$ form a triangle with the origin as orthocenter, then (a, b) is given by
A.$\left( {6,4} \right)$
B.$\left( { - 3,3} \right)$
C.$\left( { - 8,8} \right)$
D.$\left( {0,7} \right)$
Answer
578.1k+ views
Hint: Orthocenter is the intersection point of the altitudes drawn from the vertices of the triangle to the opposite sides.
The general equation of the family of lines through the point of intersection of two given lines L1 and L2 is given by
${L_1} + \lambda {L_2} = 0$, where $\lambda $ is a parameter.
Formula Used:
Equation of a line passing through two points $\left( {{x_1},{y_1}} \right)\& \left( {{x_2},{y_2}} \right)$ is given as
$y - {y_1} = \left( {\dfrac{{{y_2} - {y_1}}}{{{x_2} - {x_1}}}} \right)\left( {x - {x_1}} \right)$
Two lines L1 and L2 are perpendicular to each other if ${m_1}{m_2} = - 1$
Complete step by step solution:
According to the question,
Lines $2x + 3y - 1 = 0,x + 2y - 1 = 0$ and $ax + by - 1 = 0$ form a triangle, so to find the intersection point of lines $2x + 3y - 1 = 0,x + 2y - 1 = 0$ we have to convert the given equation into slope intercept form i.e. $y = mx + c$
Now, the equations are as follows
$\begin{gathered}
3y = 1 - 2x \ldots \left( 1 \right) \\
2y = 1 - x \\
x = 1 - 2y \ldots \left( 2 \right) \\
\end{gathered} $
Substitute the value of x in equation (1)
$\begin{gathered}
3y = 1 - 2\left( {1 - 2y} \right) \\
3y = 1 - 2 + 4y \\
y = 1 \\
\end{gathered} $
Put the value of y in equation (2)
$\begin{gathered}
x = 1 - 2y \\
x = 1 - 2\left( 1 \right) \\
x = - 1 \\
\end{gathered} $
Hence, the intersection point is (-1, 1)
Line passing through (-1, 1) and origin is perpendicular to $ax + by - 1 = 0$
Required line ${L_1}:y = - x$ and ${L_2}:ax + by - 1 = 0$ are perpendicular as the product of their slope is -1.
By using ${m_1}{m_2} = - 1$, we get $a = - b \ldots \left( i \right)$
Also line passing through $x + 2y - 1 = 0$ and $ax + by - 1 = 0$, is
$x + 2y - 1 + \lambda \left( {ax + by - 1} \right) = 0$
It passes through origin, so
$\lambda = - 1$
Line is $x\left( {1 - a} \right) + y\left( {2 - b} \right) = 0$
This is perpendicular to line $2x + 3y - 1 = 0$
So, using ${m_1}{m_2} = - 1$, we get
$2a + 3b = 8 \ldots \left( {ii} \right)$
Then on solving equation (i) and (ii), we get
$\begin{gathered}
a = 8 \\
b = - 8 \\
\end{gathered} $
Hence, (a, b) is (8, -8)
Option (C) is correct
Note: Position of orthocenter:
1)For an acute triangle, it lies inside the triangle.
2)For an obtuse triangle, it lies outside of the triangle.
3)For a right-angled triangle, it lies on the vertex of right angle
The general equation of the family of lines through the point of intersection of two given lines L1 and L2 is given by
${L_1} + \lambda {L_2} = 0$, where $\lambda $ is a parameter.
Formula Used:
Equation of a line passing through two points $\left( {{x_1},{y_1}} \right)\& \left( {{x_2},{y_2}} \right)$ is given as
$y - {y_1} = \left( {\dfrac{{{y_2} - {y_1}}}{{{x_2} - {x_1}}}} \right)\left( {x - {x_1}} \right)$
Two lines L1 and L2 are perpendicular to each other if ${m_1}{m_2} = - 1$
Complete step by step solution:
According to the question,
Lines $2x + 3y - 1 = 0,x + 2y - 1 = 0$ and $ax + by - 1 = 0$ form a triangle, so to find the intersection point of lines $2x + 3y - 1 = 0,x + 2y - 1 = 0$ we have to convert the given equation into slope intercept form i.e. $y = mx + c$
Now, the equations are as follows
$\begin{gathered}
3y = 1 - 2x \ldots \left( 1 \right) \\
2y = 1 - x \\
x = 1 - 2y \ldots \left( 2 \right) \\
\end{gathered} $
Substitute the value of x in equation (1)
$\begin{gathered}
3y = 1 - 2\left( {1 - 2y} \right) \\
3y = 1 - 2 + 4y \\
y = 1 \\
\end{gathered} $
Put the value of y in equation (2)
$\begin{gathered}
x = 1 - 2y \\
x = 1 - 2\left( 1 \right) \\
x = - 1 \\
\end{gathered} $
Hence, the intersection point is (-1, 1)
Line passing through (-1, 1) and origin is perpendicular to $ax + by - 1 = 0$
Required line ${L_1}:y = - x$ and ${L_2}:ax + by - 1 = 0$ are perpendicular as the product of their slope is -1.
By using ${m_1}{m_2} = - 1$, we get $a = - b \ldots \left( i \right)$
Also line passing through $x + 2y - 1 = 0$ and $ax + by - 1 = 0$, is
$x + 2y - 1 + \lambda \left( {ax + by - 1} \right) = 0$
It passes through origin, so
$\lambda = - 1$
Line is $x\left( {1 - a} \right) + y\left( {2 - b} \right) = 0$
This is perpendicular to line $2x + 3y - 1 = 0$
So, using ${m_1}{m_2} = - 1$, we get
$2a + 3b = 8 \ldots \left( {ii} \right)$
Then on solving equation (i) and (ii), we get
$\begin{gathered}
a = 8 \\
b = - 8 \\
\end{gathered} $
Hence, (a, b) is (8, -8)
Option (C) is correct
Note: Position of orthocenter:
1)For an acute triangle, it lies inside the triangle.
2)For an obtuse triangle, it lies outside of the triangle.
3)For a right-angled triangle, it lies on the vertex of right angle
Recently Updated Pages
Master Class 11 Chemistry: Engaging Questions & Answers for Success

Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

