
If the standard deviation of a variable \[X\] is \[\sigma \], then the standard deviation of the variable \[\dfrac{{aX + b}}{c}\] is
(a) \[a\sigma \]
(b) \[\dfrac{a}{c}\sigma \]
(c) \[\left| {\dfrac{a}{c}} \right|\sigma \]
(d) \[\dfrac{{a\sigma + b}}{c}\]
Answer
562.2k+ views
Hint:
Here, we need to find the standard deviation of the variable \[\dfrac{{aX + b}}{c}\]. Let \[Y = \dfrac{{aX + b}}{c}\]. First, we will find the variance of the variable \[X\]. Then, we will find the mean of the variable \[Y\]. Using the mean of \[Y\], we will find the variance of \[Y\]. Then, using the variance of \[X\], we will simplify the expression for variance of \[Y\]. Finally, we will use the variance of \[Y\] to find the standard deviation of \[Y\], and hence, the standard deviation of the variable \[\dfrac{{aX + b}}{c}\].
Formula Used: The mean of a variable of a variable \[X\] is given by the formula \[\dfrac{1}{n}\sum\limits_{i = 1}^n {{x_i}} \].
The variance of a variable of a variable \[X\] is given by the formula \[\dfrac{1}{n}\sum\limits_{i = 1}^n {{{\left( {{x_i} - \overline X } \right)}^2}} \].
The standard deviation of a variable is equal to the square root of the variance of the variable.
Complete step by step solution:
The mean of a variable \[X\] is given by the formula \[\dfrac{1}{n}\sum\limits_{i = 1}^n {{x_i}} \].
Therefore, we get
\[\overline X = \dfrac{1}{n}\sum\limits_{i = 1}^n {{x_i}} \]
The standard deviation of a variable is equal to the square root of the variance of the variable.
The standard deviation of a variable \[X\] is \[\sigma \].
The variance of a variable of a variable \[X\] is given by the formula \[\dfrac{1}{n}\sum\limits_{i = 1}^n {{{\left( {{x_i} - \overline X } \right)}^2}} \].
Therefore, we get
\[ \Rightarrow {\sigma ^2} = \dfrac{1}{n}\sum\limits_{i = 1}^n {{{\left( {{x_i} - \overline X } \right)}^2}} \]
Now, let \[Y = \dfrac{{aX + b}}{c}\].
Therefore, we get \[{y_i} = \dfrac{{a{x_i} + b}}{c}\].
We know that if all the terms of a series are increased, decreased, multiplied, or divided by the same number, the mean is also increased, divided, multiplied, or divided by the same number.
This means that if \[z = px + q\], then \[\overline z = p\overline x + q\].
Therefore, we get
\[ \Rightarrow \overline Y = \dfrac{{a\overline X + b}}{c}\]
Now, we will find the variance of the variable \[Y\].
Using the formula for variance of a variable, we get
\[Var\left( Y \right) = \dfrac{1}{n}\sum\limits_{i = 1}^n {{{\left( {{y_i} - \overline Y } \right)}^2}} \]
Substituting \[{y_i} = \dfrac{{a{x_i} + b}}{c}\] and \[\overline Y = \dfrac{{a\overline X + b}}{c}\] in the expression, we get
\[ \Rightarrow Var\left( Y \right) = \dfrac{1}{n}\sum\limits_{i = 1}^n {{{\left( {\dfrac{{a{x_i} + b}}{c} - \dfrac{{a\overline X + b}}{c}} \right)}^2}} \]
Splitting the L.C.M., we get
\[ \Rightarrow Var\left( Y \right) = \dfrac{1}{n}\sum\limits_{i = 1}^n {{{\left( {\dfrac{{a{x_i}}}{c} + \dfrac{b}{c} - \dfrac{{a\overline X }}{c} - \dfrac{b}{c}} \right)}^2}} \]
Subtracting the like terms, we get
\[ \Rightarrow Var\left( Y \right) = \dfrac{1}{n}\sum\limits_{i = 1}^n {{{\left( {\dfrac{{a{x_i}}}{c} - \dfrac{{a\overline X }}{c}} \right)}^2}} \]
Factoring the terms, we get
\[ \Rightarrow Var\left( Y \right) = \dfrac{1}{n}\sum\limits_{i = 1}^n {{{\left( {\dfrac{{a\left( {{x_i} - \overline X } \right)}}{c}} \right)}^2}} \]
Simplifying the expression, we get
\[ \Rightarrow Var\left( Y \right) = \dfrac{1}{n} \times {\left( {\dfrac{a}{c}} \right)^2} \times \sum\limits_{i = 1}^n {{{\left( {{x_i} - \overline X } \right)}^2}} \]
Applying the exponent on the base and rewriting, we get
\[ \Rightarrow Var\left( Y \right) = \dfrac{{{a^2}}}{{{c^2}}}\dfrac{1}{n}\sum\limits_{i = 1}^n {{{\left( {{x_i} - \overline X } \right)}^2}} \]
Substituting \[{\sigma ^2} = \dfrac{1}{n}\sum\limits_{i = 1}^n {{{\left( {{x_i} - \overline X } \right)}^2}} \] in the expression, we get
\[ \Rightarrow Var\left( Y \right) = \dfrac{{{a^2}}}{{{c^2}}}{\sigma ^2}\]
The standard deviation of \[Y\] is the square root of \[Var\left( Y \right)\].
Therefore, taking the square root of both sides, we get
\[ \Rightarrow S.D.\left( Y \right) = \sqrt {\dfrac{{{a^2}}}{{{c^2}}}{\sigma ^2}} \]
Simplifying the expression, we get
\[ \Rightarrow S.D.\left( Y \right) = \left| {\dfrac{a}{c}} \right|\sigma \]
Substituting \[Y = \dfrac{{aX + b}}{c}\] in the equation, we get
\[ \Rightarrow S.D.\left( {\dfrac{{aX + b}}{c}} \right) = \left| {\dfrac{a}{c}} \right|\sigma \]
Therefore, we get the standard deviation of the variable \[\dfrac{{aX + b}}{c}\] as \[\left| {\dfrac{a}{c}} \right|\sigma \].
Thus, the correct option is option (c).
Note:
We simplified \[Var\left( Y \right) = \dfrac{1}{n}\sum\limits_{i = 1}^n {{{\left( {\dfrac{{a\left( {{x_i} - \overline X } \right)}}{c}} \right)}^2}} \] to \[Var\left( Y \right) = \dfrac{1}{n} \times {\left( {\dfrac{a}{c}} \right)^2} \times \sum\limits_{i = 1}^n {{{\left( {{x_i} - \overline X } \right)}^2}} \].
If all the terms of a series are multiplied, or divided by the same number, then the variance of the series is multiplied, or divided by the square of the same number.
This means that if \[z = px\], then \[Var\left( z \right) = {p^2}Var\left( x \right)\].
Here, we need to find the standard deviation of the variable \[\dfrac{{aX + b}}{c}\]. Let \[Y = \dfrac{{aX + b}}{c}\]. First, we will find the variance of the variable \[X\]. Then, we will find the mean of the variable \[Y\]. Using the mean of \[Y\], we will find the variance of \[Y\]. Then, using the variance of \[X\], we will simplify the expression for variance of \[Y\]. Finally, we will use the variance of \[Y\] to find the standard deviation of \[Y\], and hence, the standard deviation of the variable \[\dfrac{{aX + b}}{c}\].
Formula Used: The mean of a variable of a variable \[X\] is given by the formula \[\dfrac{1}{n}\sum\limits_{i = 1}^n {{x_i}} \].
The variance of a variable of a variable \[X\] is given by the formula \[\dfrac{1}{n}\sum\limits_{i = 1}^n {{{\left( {{x_i} - \overline X } \right)}^2}} \].
The standard deviation of a variable is equal to the square root of the variance of the variable.
Complete step by step solution:
The mean of a variable \[X\] is given by the formula \[\dfrac{1}{n}\sum\limits_{i = 1}^n {{x_i}} \].
Therefore, we get
\[\overline X = \dfrac{1}{n}\sum\limits_{i = 1}^n {{x_i}} \]
The standard deviation of a variable is equal to the square root of the variance of the variable.
The standard deviation of a variable \[X\] is \[\sigma \].
The variance of a variable of a variable \[X\] is given by the formula \[\dfrac{1}{n}\sum\limits_{i = 1}^n {{{\left( {{x_i} - \overline X } \right)}^2}} \].
Therefore, we get
\[ \Rightarrow {\sigma ^2} = \dfrac{1}{n}\sum\limits_{i = 1}^n {{{\left( {{x_i} - \overline X } \right)}^2}} \]
Now, let \[Y = \dfrac{{aX + b}}{c}\].
Therefore, we get \[{y_i} = \dfrac{{a{x_i} + b}}{c}\].
We know that if all the terms of a series are increased, decreased, multiplied, or divided by the same number, the mean is also increased, divided, multiplied, or divided by the same number.
This means that if \[z = px + q\], then \[\overline z = p\overline x + q\].
Therefore, we get
\[ \Rightarrow \overline Y = \dfrac{{a\overline X + b}}{c}\]
Now, we will find the variance of the variable \[Y\].
Using the formula for variance of a variable, we get
\[Var\left( Y \right) = \dfrac{1}{n}\sum\limits_{i = 1}^n {{{\left( {{y_i} - \overline Y } \right)}^2}} \]
Substituting \[{y_i} = \dfrac{{a{x_i} + b}}{c}\] and \[\overline Y = \dfrac{{a\overline X + b}}{c}\] in the expression, we get
\[ \Rightarrow Var\left( Y \right) = \dfrac{1}{n}\sum\limits_{i = 1}^n {{{\left( {\dfrac{{a{x_i} + b}}{c} - \dfrac{{a\overline X + b}}{c}} \right)}^2}} \]
Splitting the L.C.M., we get
\[ \Rightarrow Var\left( Y \right) = \dfrac{1}{n}\sum\limits_{i = 1}^n {{{\left( {\dfrac{{a{x_i}}}{c} + \dfrac{b}{c} - \dfrac{{a\overline X }}{c} - \dfrac{b}{c}} \right)}^2}} \]
Subtracting the like terms, we get
\[ \Rightarrow Var\left( Y \right) = \dfrac{1}{n}\sum\limits_{i = 1}^n {{{\left( {\dfrac{{a{x_i}}}{c} - \dfrac{{a\overline X }}{c}} \right)}^2}} \]
Factoring the terms, we get
\[ \Rightarrow Var\left( Y \right) = \dfrac{1}{n}\sum\limits_{i = 1}^n {{{\left( {\dfrac{{a\left( {{x_i} - \overline X } \right)}}{c}} \right)}^2}} \]
Simplifying the expression, we get
\[ \Rightarrow Var\left( Y \right) = \dfrac{1}{n} \times {\left( {\dfrac{a}{c}} \right)^2} \times \sum\limits_{i = 1}^n {{{\left( {{x_i} - \overline X } \right)}^2}} \]
Applying the exponent on the base and rewriting, we get
\[ \Rightarrow Var\left( Y \right) = \dfrac{{{a^2}}}{{{c^2}}}\dfrac{1}{n}\sum\limits_{i = 1}^n {{{\left( {{x_i} - \overline X } \right)}^2}} \]
Substituting \[{\sigma ^2} = \dfrac{1}{n}\sum\limits_{i = 1}^n {{{\left( {{x_i} - \overline X } \right)}^2}} \] in the expression, we get
\[ \Rightarrow Var\left( Y \right) = \dfrac{{{a^2}}}{{{c^2}}}{\sigma ^2}\]
The standard deviation of \[Y\] is the square root of \[Var\left( Y \right)\].
Therefore, taking the square root of both sides, we get
\[ \Rightarrow S.D.\left( Y \right) = \sqrt {\dfrac{{{a^2}}}{{{c^2}}}{\sigma ^2}} \]
Simplifying the expression, we get
\[ \Rightarrow S.D.\left( Y \right) = \left| {\dfrac{a}{c}} \right|\sigma \]
Substituting \[Y = \dfrac{{aX + b}}{c}\] in the equation, we get
\[ \Rightarrow S.D.\left( {\dfrac{{aX + b}}{c}} \right) = \left| {\dfrac{a}{c}} \right|\sigma \]
Therefore, we get the standard deviation of the variable \[\dfrac{{aX + b}}{c}\] as \[\left| {\dfrac{a}{c}} \right|\sigma \].
Thus, the correct option is option (c).
Note:
We simplified \[Var\left( Y \right) = \dfrac{1}{n}\sum\limits_{i = 1}^n {{{\left( {\dfrac{{a\left( {{x_i} - \overline X } \right)}}{c}} \right)}^2}} \] to \[Var\left( Y \right) = \dfrac{1}{n} \times {\left( {\dfrac{a}{c}} \right)^2} \times \sum\limits_{i = 1}^n {{{\left( {{x_i} - \overline X } \right)}^2}} \].
If all the terms of a series are multiplied, or divided by the same number, then the variance of the series is multiplied, or divided by the square of the same number.
This means that if \[z = px\], then \[Var\left( z \right) = {p^2}Var\left( x \right)\].
Recently Updated Pages
Master Class 8 Maths: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Master Class 7 Maths: Engaging Questions & Answers for Success

Class 7 Question and Answer - Your Ultimate Solutions Guide

Master Class 6 Maths: Engaging Questions & Answers for Success

Class 6 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

