
If the sine of the angles of triangle $\Delta ABC$ satisfy the equations ${{c}^{3}}{{x}^{3}}-{{c}^{2}}\left( a+b+c \right){{x}^{2}}+lx+m=0$(where $a,b,c$ are the length of the sides of the triangle $\Delta ABC$), then $\Delta ABC$ is \[\]
1. always right angled for any $l,m$\[\]
2. right angled only when $l=c\left( ab+bc+ca \right)=c\sum{ab,m=-abc}$\[\]
3. right angled when \[l=\dfrac{c\sum{ab}}{4},m=\dfrac{-abc}{8}\]
4. never right angled \[\]
Answer
565.5k+ views
Hint: Use sum of the roots formula of a polynomial equation to prove that the triangle is right-angled. Then use the product of the roots formula to find out the value of $m$.\[\]
Complete step-by-step solution:
We know that in any cubic polynomial equation ${{a}_{0}}+{{a}_{1}}x+{{a}_{2}}{{x}^{2}}+{{a}_{3}}{{x}^{3}}=0$, the sum of the roots is given by the negative ratio of the coefficient of second highest power to coefficient highest power. Let the three roots be ${{\alpha }_{1}},{{\alpha }_{2}},{{\alpha }_{3}}$ then in symbols sum of roots is ${{\alpha }_{1}}+{{\alpha }_{2}}+{{\alpha }_{3}}=-\dfrac{{{a}_{2}}}{{{a}_{3}}}$. Similarly the products of the roots are given the negative ratio of the constant term to the coefficient highest power. In symbols, product of the roots is $ {{\alpha }_{1}}{{\alpha }_{2}}{{\alpha }_{3}}=\dfrac{-{{a}_{0}}}{{{a}_{3}}} $. Also we use the formula of $\sum{{{\alpha }_{1}}{{\alpha }_{2}}=}{{\alpha }_{1}}{{\alpha }_{2}}+{{\alpha }_{2}}{{\alpha }_{3}}+{{\alpha }_{2}}{{\alpha }_{3}}=\dfrac{-{{a}_{1}}}{{{a}_{3}}}$\[\]
The given polynomial equation is \[\]
${{c}^{3}}{{x}^{3}}-{{c}^{2}}\left( a+b+c \right){{x}^{2}}+lx+m=0.....(1)$\[\]
As given in the question the sine of the angles of triangle $\Delta ABC$ which are
$\sin A,\sin B,\sin C$ satisfy equation (1).So sum of the roots,\[\]
$\sin A+\sin B+\sin C=-\left( \dfrac{-{{c}^{2}}(a+b+c)}{{{c}^{3}}} \right)=\dfrac{a+b+c}{c}.....\left( 2 \right)$ \[\]
From the law of the sine in any triangle,\[\]
\[\begin{align}
& \dfrac{a}{sinA}=\dfrac{b}{\sin B}=\dfrac{c}{\sin C}=2R\left( \text{say} \right) \\
& \Rightarrow \sin A=\dfrac{a}{2R},\sin B=\dfrac{a}{2R},\sin C=\dfrac{c}{2R} \\
\end{align}\]
Putting above values in equation (2)
\[\begin{align}
& \dfrac{a}{2R}+\dfrac{b}{2R}+\dfrac{c}{2R}=\dfrac{a+b+c}{c} \\
& \Rightarrow \dfrac{a+b+c}{c}=\dfrac{a+b+c}{2R} \\
& \Rightarrow c=2R \\
& \Rightarrow 2R\sin C=2R(\text{from sine law}) \\
& \Rightarrow \sin C=1\Rightarrow C=\dfrac{\pi }{2} \\
\end{align}\]
So the triangle $\Delta ABC$ is right angled.
Now the product of the roots is from equation(2)
\[\begin{align}
& \sin A\sin B\sin C=\dfrac{-m}{{{c}^{3}}} \\
& \Rightarrow \dfrac{abc}{8{{R}^{3}}}=\dfrac{-m}{{{c}^{3}}} \\
& \Rightarrow m=\dfrac{-\left( abc \right){{c}^{3}}}{8{{R}^{3}}}.=-abc{{\left( \dfrac{c}{2R} \right)}^{3}}=-abc{{\left( \sin C \right)}^{3}}=-abc...(3) \\
\end{align}\]
Using the formula of sum product of two roots for polynomial equation(2),
\[\begin{align}
& \sum{\sin A\sin B}=\dfrac{l}{{{c}^{3}}} \\
& \Rightarrow \sum{\dfrac{ab}{{{R}^{2}}}}=\dfrac{l}{{{c}^{3}}} \\
& \Rightarrow l=\dfrac{{{c}^{3}}}{4{{R}^{2}}}\sum{ab} \\
& \Rightarrow l={{\left( \dfrac{c}{2R} \right)}^{2}}\left( c\sum{ab} \right)=\sin C\left( c\sum{ab} \right) \\
\end{align}\]
Putting $ \sin C=1 $ in above calculation
\[l=c\sum{ab}=c(ab+bc+ca)....(4)\]
From equation (3) and (4) the right angle has the property $m=-abc$ and $l=c(ab+bc+ca)$. Hence the correct option is B.
Note: We can similarly find the sum and product of roots of polynomial equation of ${{n}^{\text{th}}}$ degree say \[{{a}_{n}}{{x}^{n}}+{{a}_{n-1}}{{x}^{n-1}}+...+{{a}_{1}}x+{{a}_{o}}=0\] where ${{a}_{n}},{{a}_{n-1}},...,{{a}_{0}}$ real coefficients. Here the sum of the roots is $-\dfrac{{{a}_{n-1}}}{{{a}_{n}}}$ and the product of the roots is ${{\left( -1 \right)}^{n}}\dfrac{{{a}_{0}}}{{{a}_{n}}}$. It is called Vieta’s formula.
Complete step-by-step solution:
We know that in any cubic polynomial equation ${{a}_{0}}+{{a}_{1}}x+{{a}_{2}}{{x}^{2}}+{{a}_{3}}{{x}^{3}}=0$, the sum of the roots is given by the negative ratio of the coefficient of second highest power to coefficient highest power. Let the three roots be ${{\alpha }_{1}},{{\alpha }_{2}},{{\alpha }_{3}}$ then in symbols sum of roots is ${{\alpha }_{1}}+{{\alpha }_{2}}+{{\alpha }_{3}}=-\dfrac{{{a}_{2}}}{{{a}_{3}}}$. Similarly the products of the roots are given the negative ratio of the constant term to the coefficient highest power. In symbols, product of the roots is $ {{\alpha }_{1}}{{\alpha }_{2}}{{\alpha }_{3}}=\dfrac{-{{a}_{0}}}{{{a}_{3}}} $. Also we use the formula of $\sum{{{\alpha }_{1}}{{\alpha }_{2}}=}{{\alpha }_{1}}{{\alpha }_{2}}+{{\alpha }_{2}}{{\alpha }_{3}}+{{\alpha }_{2}}{{\alpha }_{3}}=\dfrac{-{{a}_{1}}}{{{a}_{3}}}$\[\]
The given polynomial equation is \[\]
${{c}^{3}}{{x}^{3}}-{{c}^{2}}\left( a+b+c \right){{x}^{2}}+lx+m=0.....(1)$\[\]
As given in the question the sine of the angles of triangle $\Delta ABC$ which are
$\sin A,\sin B,\sin C$ satisfy equation (1).So sum of the roots,\[\]
$\sin A+\sin B+\sin C=-\left( \dfrac{-{{c}^{2}}(a+b+c)}{{{c}^{3}}} \right)=\dfrac{a+b+c}{c}.....\left( 2 \right)$ \[\]
From the law of the sine in any triangle,\[\]
\[\begin{align}
& \dfrac{a}{sinA}=\dfrac{b}{\sin B}=\dfrac{c}{\sin C}=2R\left( \text{say} \right) \\
& \Rightarrow \sin A=\dfrac{a}{2R},\sin B=\dfrac{a}{2R},\sin C=\dfrac{c}{2R} \\
\end{align}\]
Putting above values in equation (2)
\[\begin{align}
& \dfrac{a}{2R}+\dfrac{b}{2R}+\dfrac{c}{2R}=\dfrac{a+b+c}{c} \\
& \Rightarrow \dfrac{a+b+c}{c}=\dfrac{a+b+c}{2R} \\
& \Rightarrow c=2R \\
& \Rightarrow 2R\sin C=2R(\text{from sine law}) \\
& \Rightarrow \sin C=1\Rightarrow C=\dfrac{\pi }{2} \\
\end{align}\]
So the triangle $\Delta ABC$ is right angled.
Now the product of the roots is from equation(2)
\[\begin{align}
& \sin A\sin B\sin C=\dfrac{-m}{{{c}^{3}}} \\
& \Rightarrow \dfrac{abc}{8{{R}^{3}}}=\dfrac{-m}{{{c}^{3}}} \\
& \Rightarrow m=\dfrac{-\left( abc \right){{c}^{3}}}{8{{R}^{3}}}.=-abc{{\left( \dfrac{c}{2R} \right)}^{3}}=-abc{{\left( \sin C \right)}^{3}}=-abc...(3) \\
\end{align}\]
Using the formula of sum product of two roots for polynomial equation(2),
\[\begin{align}
& \sum{\sin A\sin B}=\dfrac{l}{{{c}^{3}}} \\
& \Rightarrow \sum{\dfrac{ab}{{{R}^{2}}}}=\dfrac{l}{{{c}^{3}}} \\
& \Rightarrow l=\dfrac{{{c}^{3}}}{4{{R}^{2}}}\sum{ab} \\
& \Rightarrow l={{\left( \dfrac{c}{2R} \right)}^{2}}\left( c\sum{ab} \right)=\sin C\left( c\sum{ab} \right) \\
\end{align}\]
Putting $ \sin C=1 $ in above calculation
\[l=c\sum{ab}=c(ab+bc+ca)....(4)\]
From equation (3) and (4) the right angle has the property $m=-abc$ and $l=c(ab+bc+ca)$. Hence the correct option is B.
Note: We can similarly find the sum and product of roots of polynomial equation of ${{n}^{\text{th}}}$ degree say \[{{a}_{n}}{{x}^{n}}+{{a}_{n-1}}{{x}^{n-1}}+...+{{a}_{1}}x+{{a}_{o}}=0\] where ${{a}_{n}},{{a}_{n-1}},...,{{a}_{0}}$ real coefficients. Here the sum of the roots is $-\dfrac{{{a}_{n-1}}}{{{a}_{n}}}$ and the product of the roots is ${{\left( -1 \right)}^{n}}\dfrac{{{a}_{0}}}{{{a}_{n}}}$. It is called Vieta’s formula.
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

What happens to glucose which enters nephron along class 10 biology CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Which of the following does not have a fundamental class 10 physics CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

