
If the simplified form ${{\left( 2.5p-1.5q \right)}^{2}}-{{\left( 1.5p-2.5q \right)}^{2}}$ is $3\left( {{p}^{2}}-{{q}^{2}} \right)$ then enter 1 else 0.
Answer
574.2k+ views
Hint: To solve this question, we will assume variables S and R to ${{\left( 2.5p-1.5q \right)}^{2}}\text{ and }{{\left( 1.5p-2.5q \right)}^{2}}$ then expand both S and R using formula ${{\left( a-b \right)}^{2}}={{a}^{2}}-2ab+{{b}^{2}}$ both separately and finally subtract S and R to get our result and match is it $3\left( {{p}^{2}}-{{q}^{2}} \right)$ or not.
Complete step by step answer:
We have to simplify the term given as,
\[{{\left( 2.5p-1.5q \right)}^{2}}-{{\left( 1.5p-2.5q \right)}^{2}}\]
Let, \[S={{\left( 2.5p-1.5q \right)}^{2}}\text{ and }R={{\left( 1.5p-2.5q \right)}^{2}}\]
Let us simplify term \[S={{\left( 2.5p-1.5q \right)}^{2}}\]
We will expand S using the formula ${{\left( a-b \right)}^{2}}={{a}^{2}}-2ab+{{b}^{2}}$
Substitute a = 2.5p and b = 1.5q and using above formula we get:
\[\begin{align}
& S={{\left( 2.5p-1.5q \right)}^{2}} \\
& \Rightarrow {{\left( 2.5p \right)}^{2}}-2\times \left( 2.5p \right)\left( 1.5q \right)+{{\left( 1.5q \right)}^{2}} \\
& \Rightarrow 6.25{{p}^{2}}-7.5pq+2.25{{q}^{2}}\text{ }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. (i)} \\
\end{align}\]
Similarly, we will expand \[R={{\left( 1.5p-2.5q \right)}^{2}}\]
Substitute a = 1.5 and b = 2.5 and using above stated formula we get:
\[\begin{align}
& R={{\left( 1.5p-2.5q \right)}^{2}} \\
& \Rightarrow {{\left( 1.5p \right)}^{2}}-2\times \left( 1.5p \right)\left( 2.5q \right)+{{\left( 2.5q \right)}^{2}} \\
& \Rightarrow 2.25{{p}^{2}}-7.5pq+6.25{{q}^{2}}\text{ }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. (ii)} \\
\end{align}\]
So, we have to calculate S-R, subtracting equation (i) and equation (ii), we get:
\[\begin{align}
& S-R=6.25{{p}^{2}}-7.5pq+2.25{{q}^{2}}-\left( 2.25{{p}^{2}}-7.5pq+6.25{{q}^{2}} \right) \\
& S-R=6.25{{p}^{2}}-7.5pq+2.25{{q}^{2}}-2.25{{p}^{2}}+7.5pq-6.25{{q}^{2}} \\
& S-R=6.25{{p}^{2}}-2.25{{p}^{2}}+2.25{{q}^{2}}-6.25{{q}^{2}} \\
& S-R=4.25{{p}^{2}}+\left( -4.25 \right){{q}^{2}} \\
& S-R=4.25\left( {{p}^{2}}-{{q}^{2}} \right) \\
\end{align}\]
So, the simplified value of ${{\left( 2.5p-1.5q \right)}^{2}}-{{\left( 1.5p-2.5q \right)}^{2}}$ is \[4.25\left( {{p}^{2}}-{{q}^{2}} \right)\ne 3\left( {{p}^{2}}-{{q}^{2}} \right)\]
So, we have the final answer as 0.
Note:
Always be clear that, the answer to this question is either 1 or 0 and not $3\left( {{p}^{2}}-{{q}^{2}} \right)\text{ and }4.25\left( {{p}^{2}}-{{q}^{2}} \right)$ Because we are asked to enter 1 or 0 as answer so, we have to focus on answer matching to $3\left( {{p}^{2}}-{{q}^{2}} \right)$ then it would be 1 else 0. Students can also solve the question using identity ${{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right)$ to the given expression directly. Then they can open the bracket and multiply the terms. Simplify further to check if it matches with given expression or not and give the final answer.
Complete step by step answer:
We have to simplify the term given as,
\[{{\left( 2.5p-1.5q \right)}^{2}}-{{\left( 1.5p-2.5q \right)}^{2}}\]
Let, \[S={{\left( 2.5p-1.5q \right)}^{2}}\text{ and }R={{\left( 1.5p-2.5q \right)}^{2}}\]
Let us simplify term \[S={{\left( 2.5p-1.5q \right)}^{2}}\]
We will expand S using the formula ${{\left( a-b \right)}^{2}}={{a}^{2}}-2ab+{{b}^{2}}$
Substitute a = 2.5p and b = 1.5q and using above formula we get:
\[\begin{align}
& S={{\left( 2.5p-1.5q \right)}^{2}} \\
& \Rightarrow {{\left( 2.5p \right)}^{2}}-2\times \left( 2.5p \right)\left( 1.5q \right)+{{\left( 1.5q \right)}^{2}} \\
& \Rightarrow 6.25{{p}^{2}}-7.5pq+2.25{{q}^{2}}\text{ }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. (i)} \\
\end{align}\]
Similarly, we will expand \[R={{\left( 1.5p-2.5q \right)}^{2}}\]
Substitute a = 1.5 and b = 2.5 and using above stated formula we get:
\[\begin{align}
& R={{\left( 1.5p-2.5q \right)}^{2}} \\
& \Rightarrow {{\left( 1.5p \right)}^{2}}-2\times \left( 1.5p \right)\left( 2.5q \right)+{{\left( 2.5q \right)}^{2}} \\
& \Rightarrow 2.25{{p}^{2}}-7.5pq+6.25{{q}^{2}}\text{ }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. (ii)} \\
\end{align}\]
So, we have to calculate S-R, subtracting equation (i) and equation (ii), we get:
\[\begin{align}
& S-R=6.25{{p}^{2}}-7.5pq+2.25{{q}^{2}}-\left( 2.25{{p}^{2}}-7.5pq+6.25{{q}^{2}} \right) \\
& S-R=6.25{{p}^{2}}-7.5pq+2.25{{q}^{2}}-2.25{{p}^{2}}+7.5pq-6.25{{q}^{2}} \\
& S-R=6.25{{p}^{2}}-2.25{{p}^{2}}+2.25{{q}^{2}}-6.25{{q}^{2}} \\
& S-R=4.25{{p}^{2}}+\left( -4.25 \right){{q}^{2}} \\
& S-R=4.25\left( {{p}^{2}}-{{q}^{2}} \right) \\
\end{align}\]
So, the simplified value of ${{\left( 2.5p-1.5q \right)}^{2}}-{{\left( 1.5p-2.5q \right)}^{2}}$ is \[4.25\left( {{p}^{2}}-{{q}^{2}} \right)\ne 3\left( {{p}^{2}}-{{q}^{2}} \right)\]
So, we have the final answer as 0.
Note:
Always be clear that, the answer to this question is either 1 or 0 and not $3\left( {{p}^{2}}-{{q}^{2}} \right)\text{ and }4.25\left( {{p}^{2}}-{{q}^{2}} \right)$ Because we are asked to enter 1 or 0 as answer so, we have to focus on answer matching to $3\left( {{p}^{2}}-{{q}^{2}} \right)$ then it would be 1 else 0. Students can also solve the question using identity ${{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right)$ to the given expression directly. Then they can open the bracket and multiply the terms. Simplify further to check if it matches with given expression or not and give the final answer.
Recently Updated Pages
Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
The shortest day of the year in India

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

