
If the roots of the quadratic equation ${{x}^{2}}+px+q=0$ are $\tan 30{}^\circ $ and $\tan 15{}^\circ $ respectively, then the value of $2+q-p$ is
1) $3$
2) $0$
3) $1$
4) $2$
Answer
492.3k+ views
Hint: In this problem we need to calculate the value of $2+q-p$ where $\tan 30{}^\circ $ and $\tan 15{}^\circ $ are roots of the quadratic equation ${{x}^{2}}+px+q=0$. Here we will use the relation between the coefficients of the quadratic equation and roots of the quadratic equation. For this we will compare the given quadratic equation with $a{{x}^{2}}+bx+c=0$. Here we will have the value of $p$ and $q$ , after having the values calculate the value of $q-p$ . Use the appropriate trigonometric formulas and values to simplify the value of $q-p$. After having the value of $q-p$, simply calculate the required value.
Complete step-by-step solution:
The quadratic equation is ${{x}^{2}}+px+q=0$.
Compare the above quadratic equation with standard quadratic equation $a{{x}^{2}}+bx+c=0$.
$a=1$ , $b=p$ and $c=q$ .
If $\alpha $ , $\beta $ are the roots of the quadratic equation $a{{x}^{2}}+bx+c=0$, then the relation between the roots and coefficients of the quadratic equation are given by
$\alpha +\beta =-\dfrac{b}{a}$ and $\alpha \beta =\dfrac{c}{a}$ .
In the problem they have mentioned that $\tan 30{}^\circ $ and $\tan 15{}^\circ $ are roots of the quadratic equation ${{x}^{2}}+px+q=0$. So we can write
$\begin{align}
& \tan 30{}^\circ +\tan 15{}^\circ =-\dfrac{p}{1} \\
& \Rightarrow \tan 30{}^\circ +\tan 15{}^\circ =-p \\
\end{align}$ and $\begin{align}
& \tan 30{}^\circ .\tan 15{}^\circ =\dfrac{q}{1} \\
& \Rightarrow \tan 30{}^\circ .\tan 15{}^\circ =q \\
\end{align}$
Now the value of $q-p$ will be
$q-p=\tan 30{}^\circ .\tan 15{}^\circ +\tan 30{}^\circ +\tan 15{}^\circ ...\left( \text{i} \right)$
From the trigonometric formula $\tan \left( A+B \right)=\dfrac{\tan A+\tan B}{1-\tan A.\tan B}$ , we can write the value of $\tan 30{}^\circ +\tan 15{}^\circ $ as $\tan 30{}^\circ +\tan 15{}^\circ =\left[ \tan \left( 30{}^\circ +15{}^\circ \right) \right]\left[ 1-\tan 30{}^\circ .\tan 15{}^\circ \right]$ . Substituting this value in the equation $\left( \text{i} \right)$ , then we will have
$\begin{align}
& q-p=\tan 30{}^\circ .\tan 15{}^\circ +\left[ \tan \left( 30{}^\circ +15{}^\circ \right) \right]\left[ 1-\tan 30{}^\circ .\tan 15{}^\circ \right] \\
& \Rightarrow q-p=\tan 30{}^\circ .\tan 15{}^\circ +\left[ \tan 45{}^\circ \left( 1-\tan 30{}^\circ .\tan 15{}^\circ \right) \right] \\
\end{align}$
We know that the value of $\tan 45{}^\circ =1$ . substituting this value in the above equation, then we will get
$\begin{align}
& q-p=\tan 30{}^\circ .\tan 15{}^\circ +\left[ 1\left( 1-\tan 30{}^\circ .\tan 15{}^\circ \right) \right] \\
& \Rightarrow q-p=\tan 30{}^\circ .\tan 15{}^\circ +1-\tan 30{}^\circ .\tan 15{}^\circ \\
& \Rightarrow q-p=1 \\
\end{align}$
Add $2$ on both sides of the above equation, then we will have
$\begin{align}
& 2+q-p=1+2 \\
& \therefore 2+q-p=3 \\
\end{align}$
Hence option 1 is the correct answer.
Note: We can also solve the problem in another method. In this method we will first calculate the values of $p$ and $q$ by using the trigonometric formula $\tan \left( A+B \right)=\dfrac{\tan A+\tan B}{1-\tan A.\tan B}$ individually. After simplifying the values of $p$ and $q$ we can calculate the required value. But it is some lengthy process and consumes extra time.
Complete step-by-step solution:
The quadratic equation is ${{x}^{2}}+px+q=0$.
Compare the above quadratic equation with standard quadratic equation $a{{x}^{2}}+bx+c=0$.
$a=1$ , $b=p$ and $c=q$ .
If $\alpha $ , $\beta $ are the roots of the quadratic equation $a{{x}^{2}}+bx+c=0$, then the relation between the roots and coefficients of the quadratic equation are given by
$\alpha +\beta =-\dfrac{b}{a}$ and $\alpha \beta =\dfrac{c}{a}$ .
In the problem they have mentioned that $\tan 30{}^\circ $ and $\tan 15{}^\circ $ are roots of the quadratic equation ${{x}^{2}}+px+q=0$. So we can write
$\begin{align}
& \tan 30{}^\circ +\tan 15{}^\circ =-\dfrac{p}{1} \\
& \Rightarrow \tan 30{}^\circ +\tan 15{}^\circ =-p \\
\end{align}$ and $\begin{align}
& \tan 30{}^\circ .\tan 15{}^\circ =\dfrac{q}{1} \\
& \Rightarrow \tan 30{}^\circ .\tan 15{}^\circ =q \\
\end{align}$
Now the value of $q-p$ will be
$q-p=\tan 30{}^\circ .\tan 15{}^\circ +\tan 30{}^\circ +\tan 15{}^\circ ...\left( \text{i} \right)$
From the trigonometric formula $\tan \left( A+B \right)=\dfrac{\tan A+\tan B}{1-\tan A.\tan B}$ , we can write the value of $\tan 30{}^\circ +\tan 15{}^\circ $ as $\tan 30{}^\circ +\tan 15{}^\circ =\left[ \tan \left( 30{}^\circ +15{}^\circ \right) \right]\left[ 1-\tan 30{}^\circ .\tan 15{}^\circ \right]$ . Substituting this value in the equation $\left( \text{i} \right)$ , then we will have
$\begin{align}
& q-p=\tan 30{}^\circ .\tan 15{}^\circ +\left[ \tan \left( 30{}^\circ +15{}^\circ \right) \right]\left[ 1-\tan 30{}^\circ .\tan 15{}^\circ \right] \\
& \Rightarrow q-p=\tan 30{}^\circ .\tan 15{}^\circ +\left[ \tan 45{}^\circ \left( 1-\tan 30{}^\circ .\tan 15{}^\circ \right) \right] \\
\end{align}$
We know that the value of $\tan 45{}^\circ =1$ . substituting this value in the above equation, then we will get
$\begin{align}
& q-p=\tan 30{}^\circ .\tan 15{}^\circ +\left[ 1\left( 1-\tan 30{}^\circ .\tan 15{}^\circ \right) \right] \\
& \Rightarrow q-p=\tan 30{}^\circ .\tan 15{}^\circ +1-\tan 30{}^\circ .\tan 15{}^\circ \\
& \Rightarrow q-p=1 \\
\end{align}$
Add $2$ on both sides of the above equation, then we will have
$\begin{align}
& 2+q-p=1+2 \\
& \therefore 2+q-p=3 \\
\end{align}$
Hence option 1 is the correct answer.
Note: We can also solve the problem in another method. In this method we will first calculate the values of $p$ and $q$ by using the trigonometric formula $\tan \left( A+B \right)=\dfrac{\tan A+\tan B}{1-\tan A.\tan B}$ individually. After simplifying the values of $p$ and $q$ we can calculate the required value. But it is some lengthy process and consumes extra time.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

