
If the roots of the cubic $64{{x}^{3}}-144{{x}^{2}}+92x-15=0$ are in Arithmetic Progression, then the difference between the largest and smallest root is
Answer
568.2k+ views
Hint: We solve this problem by first assuming the roots of the equation that are in arithmetic progression as $a-d,a,a+d$. Then we use the formula for the sum and product of the roots of the equation $a{{x}^{3}}+b{{x}^{2}}+cx+d=0$, $\alpha +\beta +\gamma =-\dfrac{b}{a}$, $\alpha \beta +\beta \gamma +\gamma \alpha =\dfrac{c}{a}$ and $\alpha \beta \gamma =-\dfrac{d}{a}$. Then we use these formulas, and substitute the assumed roots and solve them to find the value of $a$ and $d$. Then using those values, we find the roots and then the difference between the largest and the smallest roots.
Complete step-by-step solution
The equation we are given is $64{{x}^{3}}-144{{x}^{2}}+92x-15=0$.
We are also given that the roots of this cubic equation are in Arithmetic Progression. So, let us assume that the roots are $a-d,a,a+d$.
Now let us consider the formula for the sum and product of the roots of the equation, $a{{x}^{3}}+b{{x}^{2}}+cx+d=0$.
$\begin{align}
&\Rightarrow \alpha +\beta +\gamma =-\dfrac{b}{a} \\
&\Rightarrow \alpha \beta +\beta \gamma +\gamma \alpha =\dfrac{c}{a} \\
&\Rightarrow \alpha \beta \gamma =-\dfrac{d}{a} \\
\end{align}$
So, using this formula, we can write the sum of the roots $a-d, a, a+d$ as,
$\begin{align}
& \Rightarrow a-d+a+a+d=-\left( -\dfrac{144}{64} \right) \\
& \Rightarrow 3a=\dfrac{144}{64} \\
& \Rightarrow 3a=\dfrac{9}{4} \\
& \Rightarrow a=\dfrac{3}{4}................\left( 1 \right) \\
\end{align}$
Now let us use the formula for the product of the roots $a-d,a,a+d$. Then we get,
\[\begin{align}
& \Rightarrow \left( a-d \right)\times a\times \left( a+d \right)=-\left( -\dfrac{15}{64} \right) \\
& \Rightarrow a\left( a-d \right)\left( a+d \right)=\dfrac{15}{64} \\
\end{align}\]
Now let us consider the formula,
$\left( a-b \right)\left( a+b \right)={{a}^{2}}-{{b}^{2}}$
Using this formula, we can write the above equation as,
\[\Rightarrow a\left( {{a}^{2}}-{{d}^{2}} \right)=\dfrac{15}{64}\]
Now let us substitute the value of $a$ from equation (1) in the above equation. Then we get,
\[\begin{align}
& \Rightarrow \left( \dfrac{3}{4} \right)\left( {{\left( \dfrac{3}{4} \right)}^{2}}-{{d}^{2}} \right)=\dfrac{15}{64} \\
& \Rightarrow \dfrac{9}{16}-{{d}^{2}}=\dfrac{\dfrac{15}{64}}{\dfrac{3}{4}} \\
& \Rightarrow \dfrac{9}{16}-{{d}^{2}}=\dfrac{5}{16} \\
\end{align}\]
\[\begin{align}
& \Rightarrow {{d}^{2}}=\dfrac{9}{16}-\dfrac{5}{16} \\
& \Rightarrow {{d}^{2}}=\dfrac{4}{16} \\
& \Rightarrow {{d}^{2}}=\dfrac{1}{4} \\
& \Rightarrow d=\pm \dfrac{1}{2} \\
\end{align}\]
Now we need to find the difference between the largest and smallest root in the progression.
When $a=\dfrac{3}{4}\ and\ d=\dfrac{1}{2}$, the roots are
\[\begin{align}
& \Rightarrow a-d=\dfrac{3}{4}-\dfrac{1}{2}=\dfrac{1}{4} \\
& \Rightarrow a=\dfrac{3}{4} \\
& \Rightarrow a+d=\dfrac{3}{4}+\dfrac{1}{2}=\dfrac{5}{4} \\
\end{align}\]
So, difference between the largest and smallest terms is,
$\Rightarrow \dfrac{5}{4}-\dfrac{1}{4}=\dfrac{4}{4}=1$
When $a=\dfrac{3}{4}\ and\ d=-\dfrac{1}{2}$, the roots are
\[\begin{align}
& \Rightarrow a-d=\dfrac{3}{4}-\left( -\dfrac{1}{2} \right)=\dfrac{3}{4}+\dfrac{1}{2}=\dfrac{5}{4} \\
& \Rightarrow a=\dfrac{3}{4} \\
& \Rightarrow a+d=\dfrac{3}{4}+\left( -\dfrac{1}{2} \right)=\dfrac{3}{4}-\dfrac{1}{2}=\dfrac{1}{4} \\
\end{align}\]
So, difference between the largest and smallest roots is,
$\Rightarrow \dfrac{5}{4}-\dfrac{1}{4}=\dfrac{4}{4}=1$
So, in both the cases the difference is equal to 1. Hence the answer is 1.
Note: The common mistake one does while solving this problem is one might take the difference of largest and smallest root as,
$\begin{align}
& \Rightarrow \left( a+d \right)-\left( a-d \right) \\
& \Rightarrow 2d \\
\end{align}$
So, it is equal to 1 if \[d=\dfrac{1}{2}\] and -1 when $d=-\dfrac{1}{2}$.
But it is wrong because when $d=-\dfrac{1}{2}$, the largest root is $a-d$ and the smallest root is $a+d$. So, we will get the answer as 1 again.
Complete step-by-step solution
The equation we are given is $64{{x}^{3}}-144{{x}^{2}}+92x-15=0$.
We are also given that the roots of this cubic equation are in Arithmetic Progression. So, let us assume that the roots are $a-d,a,a+d$.
Now let us consider the formula for the sum and product of the roots of the equation, $a{{x}^{3}}+b{{x}^{2}}+cx+d=0$.
$\begin{align}
&\Rightarrow \alpha +\beta +\gamma =-\dfrac{b}{a} \\
&\Rightarrow \alpha \beta +\beta \gamma +\gamma \alpha =\dfrac{c}{a} \\
&\Rightarrow \alpha \beta \gamma =-\dfrac{d}{a} \\
\end{align}$
So, using this formula, we can write the sum of the roots $a-d, a, a+d$ as,
$\begin{align}
& \Rightarrow a-d+a+a+d=-\left( -\dfrac{144}{64} \right) \\
& \Rightarrow 3a=\dfrac{144}{64} \\
& \Rightarrow 3a=\dfrac{9}{4} \\
& \Rightarrow a=\dfrac{3}{4}................\left( 1 \right) \\
\end{align}$
Now let us use the formula for the product of the roots $a-d,a,a+d$. Then we get,
\[\begin{align}
& \Rightarrow \left( a-d \right)\times a\times \left( a+d \right)=-\left( -\dfrac{15}{64} \right) \\
& \Rightarrow a\left( a-d \right)\left( a+d \right)=\dfrac{15}{64} \\
\end{align}\]
Now let us consider the formula,
$\left( a-b \right)\left( a+b \right)={{a}^{2}}-{{b}^{2}}$
Using this formula, we can write the above equation as,
\[\Rightarrow a\left( {{a}^{2}}-{{d}^{2}} \right)=\dfrac{15}{64}\]
Now let us substitute the value of $a$ from equation (1) in the above equation. Then we get,
\[\begin{align}
& \Rightarrow \left( \dfrac{3}{4} \right)\left( {{\left( \dfrac{3}{4} \right)}^{2}}-{{d}^{2}} \right)=\dfrac{15}{64} \\
& \Rightarrow \dfrac{9}{16}-{{d}^{2}}=\dfrac{\dfrac{15}{64}}{\dfrac{3}{4}} \\
& \Rightarrow \dfrac{9}{16}-{{d}^{2}}=\dfrac{5}{16} \\
\end{align}\]
\[\begin{align}
& \Rightarrow {{d}^{2}}=\dfrac{9}{16}-\dfrac{5}{16} \\
& \Rightarrow {{d}^{2}}=\dfrac{4}{16} \\
& \Rightarrow {{d}^{2}}=\dfrac{1}{4} \\
& \Rightarrow d=\pm \dfrac{1}{2} \\
\end{align}\]
Now we need to find the difference between the largest and smallest root in the progression.
When $a=\dfrac{3}{4}\ and\ d=\dfrac{1}{2}$, the roots are
\[\begin{align}
& \Rightarrow a-d=\dfrac{3}{4}-\dfrac{1}{2}=\dfrac{1}{4} \\
& \Rightarrow a=\dfrac{3}{4} \\
& \Rightarrow a+d=\dfrac{3}{4}+\dfrac{1}{2}=\dfrac{5}{4} \\
\end{align}\]
So, difference between the largest and smallest terms is,
$\Rightarrow \dfrac{5}{4}-\dfrac{1}{4}=\dfrac{4}{4}=1$
When $a=\dfrac{3}{4}\ and\ d=-\dfrac{1}{2}$, the roots are
\[\begin{align}
& \Rightarrow a-d=\dfrac{3}{4}-\left( -\dfrac{1}{2} \right)=\dfrac{3}{4}+\dfrac{1}{2}=\dfrac{5}{4} \\
& \Rightarrow a=\dfrac{3}{4} \\
& \Rightarrow a+d=\dfrac{3}{4}+\left( -\dfrac{1}{2} \right)=\dfrac{3}{4}-\dfrac{1}{2}=\dfrac{1}{4} \\
\end{align}\]
So, difference between the largest and smallest roots is,
$\Rightarrow \dfrac{5}{4}-\dfrac{1}{4}=\dfrac{4}{4}=1$
So, in both the cases the difference is equal to 1. Hence the answer is 1.
Note: The common mistake one does while solving this problem is one might take the difference of largest and smallest root as,
$\begin{align}
& \Rightarrow \left( a+d \right)-\left( a-d \right) \\
& \Rightarrow 2d \\
\end{align}$
So, it is equal to 1 if \[d=\dfrac{1}{2}\] and -1 when $d=-\dfrac{1}{2}$.
But it is wrong because when $d=-\dfrac{1}{2}$, the largest root is $a-d$ and the smallest root is $a+d$. So, we will get the answer as 1 again.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
Differentiate between an exothermic and an endothermic class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

State the laws of reflection of light

