
If the resolved part of the force vector \[5\widehat i + 4\widehat j + 2\widehat k\] along and perpendicular to the vector\[3\widehat i + 4\widehat j + - 5\widehat k\] are \[\alpha \] and \[\beta \] respectively. Then the value of \[\alpha \] is
a.\[\dfrac{{21}}{{50}}\left( {3\widehat i + 4\widehat j - 5\widehat k} \right)\]
b.\[\dfrac{{21}}{{50}}\left( {3\widehat i - 4\widehat j + 5\widehat k} \right)\]
c.\[\dfrac{{11}}{{50}}\left( {2\widehat i - 4\widehat j + 3\widehat k} \right)\]
d.\[\dfrac{1}{{50}}\left( {187\widehat i + 116\widehat j + 205\widehat k} \right)\]
Answer
558.3k+ views
Hint: Here we need to find the value of \[\alpha \], which is equal to the resolved part of vector \[5\widehat i + 4\widehat j + 2\widehat k\] along the vector \[3\widehat i + 4\widehat j + - 5\widehat k\]. We will resolve the vector \[5\widehat i + 4\widehat j + 2\widehat k\] along another vector\[3\widehat i + 4\widehat j + - 5\widehat k\]. We will use the formula to resolve the vector\[5\widehat i + 4\widehat j + 2\widehat k\] along another vector\[3\widehat i + 4\widehat j + - 5\widehat k\]. This will give us the value of \[\alpha \].
Formula used:
We will use the formula to resolve the part of any vector \[a\] along another vector \[b\] is \[\dfrac{{\left( {\overrightarrow a .\overrightarrow b } \right)\overrightarrow b }}{{{{\left| b \right|}^2}}}\].
Complete step-by-step answer:
It is given that the resolved part of the vector \[5\widehat i + 4\widehat j + 2\widehat k\] along the vector \[3\widehat i + 4\widehat j + - 5\widehat k\] is equal to \[\alpha \]and resolved part of the vector \[5\widehat i + 4\widehat j + 2\widehat k\]perpendicular to the vector\[3\widehat i + 4\widehat j + - 5\widehat k\] is equal to\[\beta \].
Let us assume \[\overrightarrow a = 5\widehat i + 4\widehat j + 2\widehat k\] and \[\overrightarrow b = 3\widehat i + 4\widehat j + - 5\widehat k\].
We will put the value of the vector\[\overrightarrow a \] and \[\overrightarrow b \] in the formula $\Rightarrow$ \[\dfrac{{\left( {\overrightarrow a .\overrightarrow b } \right)\overrightarrow b }}{{{{\left| b \right|}^2}}}\].
$\Rightarrow$ \[\alpha = \dfrac{{\left[ {\left( {5\widehat i + 4\widehat j + 2\widehat k} \right).\left( {3\widehat i + 4\widehat j + - 5\widehat k} \right)} \right]\left( {3\widehat i + 4\widehat j + - 5\widehat k} \right)}}{{{{\left| {\left( {3\widehat i + 4\widehat j + - 5\widehat k} \right)} \right|}^2}}}\]
We find the dot product of the two vectors in the numerator.
$\Rightarrow$ \[\alpha = \dfrac{{\left( {5.3 + 4.4 - 2.5} \right)\left( {3\widehat i + 4\widehat j + - 5\widehat k} \right)}}{{{{\left| {\left( {3\widehat i + 4\widehat j + - 5\widehat k} \right)} \right|}^2}}}\]
Multiplying and adding the terms inside the bracket, we get
$\Rightarrow$ \[\alpha = \dfrac{{21\left( {3\widehat i + 4\widehat j + - 5\widehat k} \right)}}{{{{\left| {\left( {3\widehat i + 4\widehat j + - 5\widehat k} \right)} \right|}^2}}}\]
Now, we will find the magnitude of the vector in the denominator.
$\Rightarrow$ \[\alpha = \dfrac{{21\left( {3\widehat i + 4\widehat j + - 5\widehat k} \right)}}{{{{\left| {\sqrt {\left( {{3^2} + {4^2} + {{\left( { - 5} \right)}^2}} \right)} } \right|}^2}}}\]
Simplifying the expression, we get
$\Rightarrow$ \[\alpha = \dfrac{{21\left( {3\widehat i + 4\widehat j + - 5\widehat k} \right)}}{{50}}\]
Rewriting the value of \[\alpha \], we get
$\Rightarrow$ \[\alpha = \dfrac{{21}}{{50}}\left( {3\widehat i + 4\widehat j + - 5\widehat k} \right)\]
Thus, the correct option is option (a).
Note: We have calculated the resolved part of a vector along another vector. Vector resolution is defined as a process of breaking one vector into two smaller vectors where both the vectors will be perpendicular to each other. In other words, we can say that the vector resolution is a process of finding two components of a given vector.
Formula used:
We will use the formula to resolve the part of any vector \[a\] along another vector \[b\] is \[\dfrac{{\left( {\overrightarrow a .\overrightarrow b } \right)\overrightarrow b }}{{{{\left| b \right|}^2}}}\].
Complete step-by-step answer:
It is given that the resolved part of the vector \[5\widehat i + 4\widehat j + 2\widehat k\] along the vector \[3\widehat i + 4\widehat j + - 5\widehat k\] is equal to \[\alpha \]and resolved part of the vector \[5\widehat i + 4\widehat j + 2\widehat k\]perpendicular to the vector\[3\widehat i + 4\widehat j + - 5\widehat k\] is equal to\[\beta \].
Let us assume \[\overrightarrow a = 5\widehat i + 4\widehat j + 2\widehat k\] and \[\overrightarrow b = 3\widehat i + 4\widehat j + - 5\widehat k\].
We will put the value of the vector\[\overrightarrow a \] and \[\overrightarrow b \] in the formula $\Rightarrow$ \[\dfrac{{\left( {\overrightarrow a .\overrightarrow b } \right)\overrightarrow b }}{{{{\left| b \right|}^2}}}\].
$\Rightarrow$ \[\alpha = \dfrac{{\left[ {\left( {5\widehat i + 4\widehat j + 2\widehat k} \right).\left( {3\widehat i + 4\widehat j + - 5\widehat k} \right)} \right]\left( {3\widehat i + 4\widehat j + - 5\widehat k} \right)}}{{{{\left| {\left( {3\widehat i + 4\widehat j + - 5\widehat k} \right)} \right|}^2}}}\]
We find the dot product of the two vectors in the numerator.
$\Rightarrow$ \[\alpha = \dfrac{{\left( {5.3 + 4.4 - 2.5} \right)\left( {3\widehat i + 4\widehat j + - 5\widehat k} \right)}}{{{{\left| {\left( {3\widehat i + 4\widehat j + - 5\widehat k} \right)} \right|}^2}}}\]
Multiplying and adding the terms inside the bracket, we get
$\Rightarrow$ \[\alpha = \dfrac{{21\left( {3\widehat i + 4\widehat j + - 5\widehat k} \right)}}{{{{\left| {\left( {3\widehat i + 4\widehat j + - 5\widehat k} \right)} \right|}^2}}}\]
Now, we will find the magnitude of the vector in the denominator.
$\Rightarrow$ \[\alpha = \dfrac{{21\left( {3\widehat i + 4\widehat j + - 5\widehat k} \right)}}{{{{\left| {\sqrt {\left( {{3^2} + {4^2} + {{\left( { - 5} \right)}^2}} \right)} } \right|}^2}}}\]
Simplifying the expression, we get
$\Rightarrow$ \[\alpha = \dfrac{{21\left( {3\widehat i + 4\widehat j + - 5\widehat k} \right)}}{{50}}\]
Rewriting the value of \[\alpha \], we get
$\Rightarrow$ \[\alpha = \dfrac{{21}}{{50}}\left( {3\widehat i + 4\widehat j + - 5\widehat k} \right)\]
Thus, the correct option is option (a).
Note: We have calculated the resolved part of a vector along another vector. Vector resolution is defined as a process of breaking one vector into two smaller vectors where both the vectors will be perpendicular to each other. In other words, we can say that the vector resolution is a process of finding two components of a given vector.
Recently Updated Pages
Why is there a time difference of about 5 hours between class 10 social science CBSE

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

