
If the ratio of trigonometric ratio $\sin A:\cos A = 4:7$, then the value of $\dfrac{{7\sin A - 3\cos A}}{{7\sin A + 2\cos A}}$ is
$
(a){\text{ }}\dfrac{3}{{14}} \\
(b){\text{ }}\dfrac{3}{2} \\
(c){\text{ }}\dfrac{1}{3} \\
(d){\text{ }}\dfrac{1}{6} \\
$
Answer
589.5k+ views
Hint: In this question take cosA common from both the numerator and denominator part. Then use the given ratio to simplify the expression and get its value.
Complete step-by-step answer:
Given data
$\sin A:\cos A = 4:7$
$ \Rightarrow \dfrac{{\sin A}}{{\cos A}} = \dfrac{4}{7}$ ...................... (1)
Now we have to find out the value of $\dfrac{{7\sin A - 3\cos A}}{{7\sin A + 2\cos A}}$.
So take cos (A) common from numerator and denominator we have,
$ \Rightarrow \dfrac{{7\sin A - 3\cos A}}{{7\sin A + 2\cos A}} = \dfrac{{\cos A\left(
{7\dfrac{{\sin A}}{{\cos A}} - 3} \right)}}{{\cos A\left( {7\dfrac{{\sin A}}{{\cos A}} + 2} \right)}}$
So as we see cos (A) is cancel out from numerator and denominator so we have,
$ \Rightarrow \dfrac{{7\sin A - 3\cos A}}{{7\sin A + 2\cos A}} = \dfrac{{\left( {7\dfrac{{\sin
A}}{{\cos A}} - 3} \right)}}{{\left( {7\dfrac{{\sin A}}{{\cos A}} + 2} \right)}}$
Now from equation (1) we have,
$ \Rightarrow \dfrac{{7\sin A - 3\cos A}}{{7\sin A + 2\cos A}} = \dfrac{{\left( {7 \times
\dfrac{4}{7} - 3} \right)}}{{\left( {7 \times \dfrac{4}{7} + 2} \right)}}$
Now simplify the above equation we have,
$ \Rightarrow \dfrac{{7\sin A - 3\cos A}}{{7\sin A + 2\cos A}} = \dfrac{{\left( {4 - 3}
\right)}}{{\left( {4 + 2} \right)}} = \dfrac{1}{6}$
So this is the required value.
Hence option (D) is correct.
Note: There could have been another way to solve this problem $\sin A:\cos A = \tan A$, using tanA the values of sinA and cosA could be taken out as $\tan A = \dfrac{P}{B}$, where P is the perpendicular and B is the base, so hypotenuse could be evaluated and thus sinA and cosA.
Complete step-by-step answer:
Given data
$\sin A:\cos A = 4:7$
$ \Rightarrow \dfrac{{\sin A}}{{\cos A}} = \dfrac{4}{7}$ ...................... (1)
Now we have to find out the value of $\dfrac{{7\sin A - 3\cos A}}{{7\sin A + 2\cos A}}$.
So take cos (A) common from numerator and denominator we have,
$ \Rightarrow \dfrac{{7\sin A - 3\cos A}}{{7\sin A + 2\cos A}} = \dfrac{{\cos A\left(
{7\dfrac{{\sin A}}{{\cos A}} - 3} \right)}}{{\cos A\left( {7\dfrac{{\sin A}}{{\cos A}} + 2} \right)}}$
So as we see cos (A) is cancel out from numerator and denominator so we have,
$ \Rightarrow \dfrac{{7\sin A - 3\cos A}}{{7\sin A + 2\cos A}} = \dfrac{{\left( {7\dfrac{{\sin
A}}{{\cos A}} - 3} \right)}}{{\left( {7\dfrac{{\sin A}}{{\cos A}} + 2} \right)}}$
Now from equation (1) we have,
$ \Rightarrow \dfrac{{7\sin A - 3\cos A}}{{7\sin A + 2\cos A}} = \dfrac{{\left( {7 \times
\dfrac{4}{7} - 3} \right)}}{{\left( {7 \times \dfrac{4}{7} + 2} \right)}}$
Now simplify the above equation we have,
$ \Rightarrow \dfrac{{7\sin A - 3\cos A}}{{7\sin A + 2\cos A}} = \dfrac{{\left( {4 - 3}
\right)}}{{\left( {4 + 2} \right)}} = \dfrac{1}{6}$
So this is the required value.
Hence option (D) is correct.
Note: There could have been another way to solve this problem $\sin A:\cos A = \tan A$, using tanA the values of sinA and cosA could be taken out as $\tan A = \dfrac{P}{B}$, where P is the perpendicular and B is the base, so hypotenuse could be evaluated and thus sinA and cosA.
Recently Updated Pages
The height of a solid metal cylinder is 20cm Its r-class-10-maths-ICSE

If a train crossed a pole at a speed of 60kmhr in 30 class 10 physics CBSE

Name the Writs that the High Courts are empowered to class 10 social science CBSE

A tower is 5sqrt 3 meter high Find the angle of el-class-10-maths-CBSE

Immediate cause of variations of A Mutations B Environmental class 10 biology CBSE

A rectangular container whose base is a square of side class 10 maths CBSE

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Why is Sardar Vallabhbhai Patel called the Iron man class 10 social science CBSE

Tropical deciduous trees shed their leaves in the dry class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Write an application to the principal requesting five class 10 english CBSE

