
If the ratio of trigonometric ratio $\sin A:\cos A = 4:7$, then the value of $\dfrac{{7\sin A - 3\cos A}}{{7\sin A + 2\cos A}}$ is
$
(a){\text{ }}\dfrac{3}{{14}} \\
(b){\text{ }}\dfrac{3}{2} \\
(c){\text{ }}\dfrac{1}{3} \\
(d){\text{ }}\dfrac{1}{6} \\
$
Answer
617.1k+ views
Hint: In this question take cosA common from both the numerator and denominator part. Then use the given ratio to simplify the expression and get its value.
Complete step-by-step answer:
Given data
$\sin A:\cos A = 4:7$
$ \Rightarrow \dfrac{{\sin A}}{{\cos A}} = \dfrac{4}{7}$ ...................... (1)
Now we have to find out the value of $\dfrac{{7\sin A - 3\cos A}}{{7\sin A + 2\cos A}}$.
So take cos (A) common from numerator and denominator we have,
$ \Rightarrow \dfrac{{7\sin A - 3\cos A}}{{7\sin A + 2\cos A}} = \dfrac{{\cos A\left(
{7\dfrac{{\sin A}}{{\cos A}} - 3} \right)}}{{\cos A\left( {7\dfrac{{\sin A}}{{\cos A}} + 2} \right)}}$
So as we see cos (A) is cancel out from numerator and denominator so we have,
$ \Rightarrow \dfrac{{7\sin A - 3\cos A}}{{7\sin A + 2\cos A}} = \dfrac{{\left( {7\dfrac{{\sin
A}}{{\cos A}} - 3} \right)}}{{\left( {7\dfrac{{\sin A}}{{\cos A}} + 2} \right)}}$
Now from equation (1) we have,
$ \Rightarrow \dfrac{{7\sin A - 3\cos A}}{{7\sin A + 2\cos A}} = \dfrac{{\left( {7 \times
\dfrac{4}{7} - 3} \right)}}{{\left( {7 \times \dfrac{4}{7} + 2} \right)}}$
Now simplify the above equation we have,
$ \Rightarrow \dfrac{{7\sin A - 3\cos A}}{{7\sin A + 2\cos A}} = \dfrac{{\left( {4 - 3}
\right)}}{{\left( {4 + 2} \right)}} = \dfrac{1}{6}$
So this is the required value.
Hence option (D) is correct.
Note: There could have been another way to solve this problem $\sin A:\cos A = \tan A$, using tanA the values of sinA and cosA could be taken out as $\tan A = \dfrac{P}{B}$, where P is the perpendicular and B is the base, so hypotenuse could be evaluated and thus sinA and cosA.
Complete step-by-step answer:
Given data
$\sin A:\cos A = 4:7$
$ \Rightarrow \dfrac{{\sin A}}{{\cos A}} = \dfrac{4}{7}$ ...................... (1)
Now we have to find out the value of $\dfrac{{7\sin A - 3\cos A}}{{7\sin A + 2\cos A}}$.
So take cos (A) common from numerator and denominator we have,
$ \Rightarrow \dfrac{{7\sin A - 3\cos A}}{{7\sin A + 2\cos A}} = \dfrac{{\cos A\left(
{7\dfrac{{\sin A}}{{\cos A}} - 3} \right)}}{{\cos A\left( {7\dfrac{{\sin A}}{{\cos A}} + 2} \right)}}$
So as we see cos (A) is cancel out from numerator and denominator so we have,
$ \Rightarrow \dfrac{{7\sin A - 3\cos A}}{{7\sin A + 2\cos A}} = \dfrac{{\left( {7\dfrac{{\sin
A}}{{\cos A}} - 3} \right)}}{{\left( {7\dfrac{{\sin A}}{{\cos A}} + 2} \right)}}$
Now from equation (1) we have,
$ \Rightarrow \dfrac{{7\sin A - 3\cos A}}{{7\sin A + 2\cos A}} = \dfrac{{\left( {7 \times
\dfrac{4}{7} - 3} \right)}}{{\left( {7 \times \dfrac{4}{7} + 2} \right)}}$
Now simplify the above equation we have,
$ \Rightarrow \dfrac{{7\sin A - 3\cos A}}{{7\sin A + 2\cos A}} = \dfrac{{\left( {4 - 3}
\right)}}{{\left( {4 + 2} \right)}} = \dfrac{1}{6}$
So this is the required value.
Hence option (D) is correct.
Note: There could have been another way to solve this problem $\sin A:\cos A = \tan A$, using tanA the values of sinA and cosA could be taken out as $\tan A = \dfrac{P}{B}$, where P is the perpendicular and B is the base, so hypotenuse could be evaluated and thus sinA and cosA.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

A moving boat is observed from the top of a 150 m high class 10 maths CBSE

