Answer
Verified
441.9k+ views
Hint: In this question, we have to choose the correct option for the particular required.
The range of a function is the set of all output values of a function that is the co-domain of the function or the image of the function.
We have to find out the type of the function for a singleton co-domain.
Complete step-by-step answer:
It is given that the range of a function is a singleton set.
Now, a singleton set is defined as a set that contains only one element.
We need to find the type of the function when the range of a function is a singleton set.
In mathematics, a constant function is a function whose output value is the same for every input value. That means the co-domain contains only one value.
In mathematics, an identity function is a function that always returns the same value that was used as its argument.
$f(x)=x$ for all x belongs to the domain. Thus the co-domain can contain more than one element.
Similarly one-one and bijective function can also contain more than one element.
Thus the function is a constant function.
The option (A) is the correct option.
Note: Constant function:
In mathematics, a constant function is a function whose output value is the same for every input value.
\[f(x) = c,\] for all \[x\] belongs to the domain. \[c\] is a constant.
Identity function:
In mathematics, an identity function is a function that always returns the same value that was used as its argument.
\[f(x) = x,\]for all \[x\] belongs to the domain.
One-one function:
A function \[f:X \to Y\] is said to be one to one (or injective function), if the images of distinct elements of \[X\] under \[f\] are distinct.
That is for every \[{x_1},{x_2} \in X,f\left( {{x_1}} \right) = f\left( {{x_2}} \right)\]implies \[{x_1} = {x_2}\].
Onto or surjective function:
In mathematics, a function \[f\] from a set \[X\] to a set \[Y\] is surjective, if for every element \[y\] in the codomain \[Y\] of \[f\], there is at least one element \[x\] in the domain \[X\] of \[f\] such that \[f\left( x \right) = y\]. It is not required that \[x\] be unique; the function \[f\] may map one or more elements of \[X\] to the same element of \[Y\].
A function that is one-one and onto is called bijective function.
That is a bijective function is a function between the elements of two sets, where each element of one set is paired with exactly one element of the other set, and each element of the other set is paired with exactly one element of the first set.
The range of a function is the set of all output values of a function that is the co-domain of the function or the image of the function.
We have to find out the type of the function for a singleton co-domain.
Complete step-by-step answer:
It is given that the range of a function is a singleton set.
Now, a singleton set is defined as a set that contains only one element.
We need to find the type of the function when the range of a function is a singleton set.
In mathematics, a constant function is a function whose output value is the same for every input value. That means the co-domain contains only one value.
In mathematics, an identity function is a function that always returns the same value that was used as its argument.
$f(x)=x$ for all x belongs to the domain. Thus the co-domain can contain more than one element.
Similarly one-one and bijective function can also contain more than one element.
Thus the function is a constant function.
The option (A) is the correct option.
Note: Constant function:
In mathematics, a constant function is a function whose output value is the same for every input value.
\[f(x) = c,\] for all \[x\] belongs to the domain. \[c\] is a constant.
Identity function:
In mathematics, an identity function is a function that always returns the same value that was used as its argument.
\[f(x) = x,\]for all \[x\] belongs to the domain.
One-one function:
A function \[f:X \to Y\] is said to be one to one (or injective function), if the images of distinct elements of \[X\] under \[f\] are distinct.
That is for every \[{x_1},{x_2} \in X,f\left( {{x_1}} \right) = f\left( {{x_2}} \right)\]implies \[{x_1} = {x_2}\].
Onto or surjective function:
In mathematics, a function \[f\] from a set \[X\] to a set \[Y\] is surjective, if for every element \[y\] in the codomain \[Y\] of \[f\], there is at least one element \[x\] in the domain \[X\] of \[f\] such that \[f\left( x \right) = y\]. It is not required that \[x\] be unique; the function \[f\] may map one or more elements of \[X\] to the same element of \[Y\].
A function that is one-one and onto is called bijective function.
That is a bijective function is a function between the elements of two sets, where each element of one set is paired with exactly one element of the other set, and each element of the other set is paired with exactly one element of the first set.
Recently Updated Pages
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Which one of the following places is not covered by class 10 social science CBSE
Trending doubts
How do you graph the function fx 4x class 9 maths CBSE
Which are the Top 10 Largest Countries of the World?
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Difference Between Plant Cell and Animal Cell
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE
In Indian rupees 1 trillion is equal to how many c class 8 maths CBSE
The largest tea producing country in the world is A class 10 social science CBSE
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE