
If the radius of the circumcircle of an equilateral triangle is 6 cm, then find the radius of its incircle.
Answer
587.4k+ views
Hint: In this question, first of all draw the diagram it will gives us a clear if idea of what we have to find and draw a perpendicular bisector to the base of the equilateral triangle and also construct a circle which is inside the triangle and find the radius of that incircle.
Complete step-by-step answer:
Let \[a\] be the side of the equilateral triangle \[ABC\]
Therefore, \[AB = BC = AC = a\].
Since \[\Delta ABC\] is an equilateral triangle each angle is equal to \[{60^0}\].
Therefore, \[\angle A = \angle B = \angle C = {60^0}\].
Given radius of circumcircle \[r = 6{\text{ cm}}\]
Since the \[\Delta ABC\] is equilateral, its perpendicular bisector i.e., the median meet at the same point \[O\] which is the centre of the incircle as shown in the below figure:
Hence, \[AD\] is the perpendicular bisector of \[BC\].
\[ \Rightarrow BD = DC = \dfrac{1}{2}BC = \dfrac{a}{2}{\text{ }}\left[ {\because BC = a} \right]\]
And \[OB\] is the angular bisector of \[\angle B\].
Therefore, \[\angle ABO = \angle OBD = \dfrac{{{{60}^0}}}{2} = {30^0}\]
From the figure clearly \[OD\] is the
In the right-angled triangle \[OBD\], consider
\[
\Rightarrow \sin {30^0} = \dfrac{{OD}}{{OB}} \\
\Rightarrow \dfrac{1}{2} = \dfrac{{OD}}{r}{\text{ }}\left[ {\because OB = r} \right] \\
\Rightarrow OD = \dfrac{r}{2} \\
\Rightarrow OD = \dfrac{6}{2}{\text{ }}\left[ {r = 6{\text{ cm}}} \right] \\
\therefore OD = 3{\text{ cm}} \\
\]
Thus, the radius of the incircle is 3 cm.
Note: For a given equilateral triangle all sides are equal and all angles are equal to \[{60^0}\]. Here the equilateral triangle is divided into two right-angled triangles with the drawn perpendicular in which one of the angles is equal to \[{90^0}\].
Complete step-by-step answer:
Let \[a\] be the side of the equilateral triangle \[ABC\]
Therefore, \[AB = BC = AC = a\].
Since \[\Delta ABC\] is an equilateral triangle each angle is equal to \[{60^0}\].
Therefore, \[\angle A = \angle B = \angle C = {60^0}\].
Given radius of circumcircle \[r = 6{\text{ cm}}\]
Since the \[\Delta ABC\] is equilateral, its perpendicular bisector i.e., the median meet at the same point \[O\] which is the centre of the incircle as shown in the below figure:
Hence, \[AD\] is the perpendicular bisector of \[BC\].
\[ \Rightarrow BD = DC = \dfrac{1}{2}BC = \dfrac{a}{2}{\text{ }}\left[ {\because BC = a} \right]\]
And \[OB\] is the angular bisector of \[\angle B\].
Therefore, \[\angle ABO = \angle OBD = \dfrac{{{{60}^0}}}{2} = {30^0}\]
From the figure clearly \[OD\] is the
In the right-angled triangle \[OBD\], consider
\[
\Rightarrow \sin {30^0} = \dfrac{{OD}}{{OB}} \\
\Rightarrow \dfrac{1}{2} = \dfrac{{OD}}{r}{\text{ }}\left[ {\because OB = r} \right] \\
\Rightarrow OD = \dfrac{r}{2} \\
\Rightarrow OD = \dfrac{6}{2}{\text{ }}\left[ {r = 6{\text{ cm}}} \right] \\
\therefore OD = 3{\text{ cm}} \\
\]
Thus, the radius of the incircle is 3 cm.
Note: For a given equilateral triangle all sides are equal and all angles are equal to \[{60^0}\]. Here the equilateral triangle is divided into two right-angled triangles with the drawn perpendicular in which one of the angles is equal to \[{90^0}\].
Recently Updated Pages
The height of a solid metal cylinder is 20cm Its r-class-10-maths-ICSE

If a train crossed a pole at a speed of 60kmhr in 30 class 10 physics CBSE

Name the Writs that the High Courts are empowered to class 10 social science CBSE

A tower is 5sqrt 3 meter high Find the angle of el-class-10-maths-CBSE

Immediate cause of variations of A Mutations B Environmental class 10 biology CBSE

A rectangular container whose base is a square of side class 10 maths CBSE

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Why is Sardar Vallabhbhai Patel called the Iron man class 10 social science CBSE

Tropical deciduous trees shed their leaves in the dry class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Write an application to the principal requesting five class 10 english CBSE

