
If the radius of curvature of a spherical mirror is $20\,cm$, then its focal length is ___________cm.
A. $20$
B. $40$
C. $10$
D. None of these
Answer
473.1k+ views
Hint: A spherical mirror is a mirror that has a shape of a piece that is cut out to be a spherical surface. A spherical mirror is that mirror that has a reflecting surface inward or outward and is in the shape of a sphere. Here, we will use the formula of the radius of curvature to find the focal length of a spherical mirror.
Complete answer:
The radius of curvature of a spherical mirror is defined as the distance between the center of curvature and the pole of a spherical mirror. In the question, the radius of the curvature of the spherical mirror is $20\,cm$. Therefore, $R = 20\,cm$
The focal length is defined as the distance between the pole and the focus of a spherical mirror.Now, the focal length is also defined as half of the radius of curvature of a spherical mirror and it is given below
$f = \dfrac{R}{2}$
Now, putting the value of $R$ in the above formula, we get
$f = \dfrac{{20}}{2}$
$\therefore f = 10\,cm$
Therefore, the focal length of a spherical mirror is $10\,cm$.Hence, option (C) is the correct option.
Note:A spherical mirror is a part of the mirror, in the form of a sphere, in which the inner or outer surface is polished and non-reflecting. We can say that the curved surface is a spherical surface. A spherical mirror is of two types which are a concave mirror and convex mirror. If the surface of a spherical mirror is concave then it is called a concave mirror whereas if the surface of a spherical mirror is convex then it is called a convex mirror.
Complete answer:
The radius of curvature of a spherical mirror is defined as the distance between the center of curvature and the pole of a spherical mirror. In the question, the radius of the curvature of the spherical mirror is $20\,cm$. Therefore, $R = 20\,cm$
The focal length is defined as the distance between the pole and the focus of a spherical mirror.Now, the focal length is also defined as half of the radius of curvature of a spherical mirror and it is given below
$f = \dfrac{R}{2}$
Now, putting the value of $R$ in the above formula, we get
$f = \dfrac{{20}}{2}$
$\therefore f = 10\,cm$
Therefore, the focal length of a spherical mirror is $10\,cm$.Hence, option (C) is the correct option.
Note:A spherical mirror is a part of the mirror, in the form of a sphere, in which the inner or outer surface is polished and non-reflecting. We can say that the curved surface is a spherical surface. A spherical mirror is of two types which are a concave mirror and convex mirror. If the surface of a spherical mirror is concave then it is called a concave mirror whereas if the surface of a spherical mirror is convex then it is called a convex mirror.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Trending doubts
A number is chosen from 1 to 20 Find the probabili-class-10-maths-CBSE

Distinguish between the reserved forests and protected class 10 biology CBSE

A boat goes 24 km upstream and 28 km downstream in class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

What are the public facilities provided by the government? Also explain each facility

Difference between mass and weight class 10 physics CBSE
