
If the probability distribution of $ X $ is
$ X $ $ 0 $ $ 1 $ $ 2 $ $ 3 $ $ 4 $ $ 5 $ $ 6 $ $ P\left( X \right) $ $ k $ $ 3k $ $ 5k $ $ 7k $ $ 9k $ $ 11k $ $ 13k $
Then the values of $ P\left( x\ge 2 \right) $ and $ P\left( 0 < x < 4 \right) $ are
A. $ \dfrac{1}{49} $ , $ \dfrac{45}{49} $
B. $ \dfrac{45}{49} $ , $ \dfrac{15}{49} $
C. $ \dfrac{15}{49} $ , $ \dfrac{34}{49} $
D. None of these.
| $ X $ | $ 0 $ | $ 1 $ | $ 2 $ | $ 3 $ | $ 4 $ | $ 5 $ | $ 6 $ |
| $ P\left( X \right) $ | $ k $ | $ 3k $ | $ 5k $ | $ 7k $ | $ 9k $ | $ 11k $ | $ 13k $ |
Answer
567k+ views
Hint: In this problem all the probabilities are given in terms of $ k $ . So, we need to calculate the value of $ k $ firstly. To calculate the value of $ k $ , we will use the probability rule i.e. the sum of the all probabilities in a given sample space is equal to one. Mathematically $ \sum{P\left( X \right)=1} $ . From this equation we will obtain the value of $ k $ . After calculating the value of $ k $ , we need to calculate the probabilities of different events they are $ P\left( x\ge 2 \right) $ and $ P\left( 0 < x < 4 \right) $ . For calculating $ P\left( x\ge 2 \right) $ , we will add the probabilities of $ x=2,3,4,5,6 $ and for calculating $ P\left( 0 < x < 4 \right) $ we will add the probabilities of $ x=1,2,3 $ .
Complete step by step answer:
Given that,
The probability distribution of $ X $ is given by
We have the rule of probability as the sum of the probabilities in a sample space is one.
$ \begin{align}
& \Rightarrow \sum{P\left( X \right)=1} \\
& \Rightarrow P\left( 0 \right)+P\left( 1 \right)+P\left( 2 \right)+P\left( 3 \right)+P\left( 4 \right)+P\left( 5 \right)+P\left( 6 \right)=1 \\
& \Rightarrow k+3k+5k+7k+9k+11k+13k=1 \\
& \Rightarrow 49k=1 \\
& \Rightarrow k=\dfrac{1}{49} \\
\end{align} $
Now the value of $ P\left( x\ge 2 \right) $ can be obtained by adding the probabilities of $ x=2,3,4,5,6 $ .
$ \begin{align}
& \therefore P\left( x\ge 2 \right)=P\left( X=2 \right)+P\left( X=3 \right)+P\left( X=4 \right)+P\left( X=5 \right)+P\left( X=6 \right) \\
& \Rightarrow P\left( x\ge 2 \right)=5k+7k+9k+11k+13k \\
& \Rightarrow P\left( x\ge 2 \right)=45k \\
\end{align} $
Substituting the value of $ k=\dfrac{1}{49} $ in the above equation, then we will have
$ \begin{align}
& \therefore P\left( x\ge 2 \right)=45\times \dfrac{1}{49} \\
& \Rightarrow P\left( x\ge 2 \right)=\dfrac{45}{49} \\
\end{align} $
Now the value of $ P\left( 0 < x < 4 \right) $ can be obtained by adding the probabilities of $ x=1,2,3 $ .
$ \begin{align}
& \Rightarrow P\left( 0 < x < 4 \right)=P\left( X=1 \right)+P\left( X=2 \right)+P\left( X=3 \right) \\
& \Rightarrow P\left( 0 < x < 4 \right)=3k+5k+7k \\
& \Rightarrow P\left( 0 < x < 4 \right)=15k \\
\end{align} $
Substituting the value of $ k=\dfrac{1}{49} $ in the above equation, then we will have
$ \begin{align}
& P\left( 0 < x < 4 \right)=15\times \dfrac{1}{49} \\
& \Rightarrow P\left( 0 < x < 4 \right)=\dfrac{15}{49} \\
\end{align} $
Finally the values of $ P\left( x\ge 2 \right) $ and $ P\left( 0 < x < 4 \right) $ are $ \dfrac{45}{49} $ and $ \dfrac{15}{49} $ respectively.
Note:
We can also find the value of $ P\left( x\ge 2 \right) $ in another method. i.e.
$ \begin{align}
& P\left( x\ge 2 \right)=1-\left[ P\left( X=0 \right)+P\left( X=1 \right) \right] \\
& \Rightarrow P\left( x\ge 2 \right)=1-\left( k+3k \right) \\
& \Rightarrow P\left( x\ge 2 \right)=1-4k \\
\end{align} $
Substituting the value of $ k=\dfrac{1}{49} $ in the above equation, then we will have
$ \begin{align}
& \Rightarrow P\left( x\ge 2 \right)=1-\dfrac{4}{49} \\
& \Rightarrow P\left( x\ge 2 \right)=\dfrac{49-4}{49} \\
& \Rightarrow P\left( x\ge 2 \right)=\dfrac{45}{49} \\
\end{align} $
From both the methods we got the same result.
Complete step by step answer:
Given that,
The probability distribution of $ X $ is given by
| $ X $ | $ 0 $ | $ 1 $ | $ 2 $ | $ 3 $ | $ 4 $ | $ 5 $ | $ 6 $ |
| $ P\left( X \right) $ | $ k $ | $ 3k $ | $ 5k $ | $ 7k $ | $ 9k $ | $ 11k $ | $ 13k $ |
We have the rule of probability as the sum of the probabilities in a sample space is one.
$ \begin{align}
& \Rightarrow \sum{P\left( X \right)=1} \\
& \Rightarrow P\left( 0 \right)+P\left( 1 \right)+P\left( 2 \right)+P\left( 3 \right)+P\left( 4 \right)+P\left( 5 \right)+P\left( 6 \right)=1 \\
& \Rightarrow k+3k+5k+7k+9k+11k+13k=1 \\
& \Rightarrow 49k=1 \\
& \Rightarrow k=\dfrac{1}{49} \\
\end{align} $
Now the value of $ P\left( x\ge 2 \right) $ can be obtained by adding the probabilities of $ x=2,3,4,5,6 $ .
$ \begin{align}
& \therefore P\left( x\ge 2 \right)=P\left( X=2 \right)+P\left( X=3 \right)+P\left( X=4 \right)+P\left( X=5 \right)+P\left( X=6 \right) \\
& \Rightarrow P\left( x\ge 2 \right)=5k+7k+9k+11k+13k \\
& \Rightarrow P\left( x\ge 2 \right)=45k \\
\end{align} $
Substituting the value of $ k=\dfrac{1}{49} $ in the above equation, then we will have
$ \begin{align}
& \therefore P\left( x\ge 2 \right)=45\times \dfrac{1}{49} \\
& \Rightarrow P\left( x\ge 2 \right)=\dfrac{45}{49} \\
\end{align} $
Now the value of $ P\left( 0 < x < 4 \right) $ can be obtained by adding the probabilities of $ x=1,2,3 $ .
$ \begin{align}
& \Rightarrow P\left( 0 < x < 4 \right)=P\left( X=1 \right)+P\left( X=2 \right)+P\left( X=3 \right) \\
& \Rightarrow P\left( 0 < x < 4 \right)=3k+5k+7k \\
& \Rightarrow P\left( 0 < x < 4 \right)=15k \\
\end{align} $
Substituting the value of $ k=\dfrac{1}{49} $ in the above equation, then we will have
$ \begin{align}
& P\left( 0 < x < 4 \right)=15\times \dfrac{1}{49} \\
& \Rightarrow P\left( 0 < x < 4 \right)=\dfrac{15}{49} \\
\end{align} $
Finally the values of $ P\left( x\ge 2 \right) $ and $ P\left( 0 < x < 4 \right) $ are $ \dfrac{45}{49} $ and $ \dfrac{15}{49} $ respectively.
Note:
We can also find the value of $ P\left( x\ge 2 \right) $ in another method. i.e.
$ \begin{align}
& P\left( x\ge 2 \right)=1-\left[ P\left( X=0 \right)+P\left( X=1 \right) \right] \\
& \Rightarrow P\left( x\ge 2 \right)=1-\left( k+3k \right) \\
& \Rightarrow P\left( x\ge 2 \right)=1-4k \\
\end{align} $
Substituting the value of $ k=\dfrac{1}{49} $ in the above equation, then we will have
$ \begin{align}
& \Rightarrow P\left( x\ge 2 \right)=1-\dfrac{4}{49} \\
& \Rightarrow P\left( x\ge 2 \right)=\dfrac{49-4}{49} \\
& \Rightarrow P\left( x\ge 2 \right)=\dfrac{45}{49} \\
\end{align} $
From both the methods we got the same result.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

A moving boat is observed from the top of a 150 m high class 10 maths CBSE

