
If the position vectors of the vertices A, B and C of a $\Delta ABC$ are respectively $4\widehat{i}+7\widehat{j}+8\widehat{k}$, $2\widehat{i}+3\widehat{j}+4\widehat{k}$ and $2\widehat{i}+5\widehat{j}+7\widehat{k}$, then the position vector of the point, where the bisector of $\angle A$ meets BC is :
A. $\dfrac{1}{2}\left( 4\widehat{i}+8\widehat{j}+11\widehat{k} \right)$
B. $\dfrac{1}{3}\left( 6\widehat{i}+13\widehat{j}+18\widehat{k} \right)$
C. $\dfrac{1}{4}\left( 8\widehat{i}+14\widehat{j}+9\widehat{k} \right)$
D. $\dfrac{1}{3}\left( 6\widehat{i}+11\widehat{j}+15\widehat{k} \right)$
Answer
512.1k+ views
Hint: First, you need to draw the diagram and mention the given information in the diagram. Find the vectors for $\overrightarrow{AB}$ and $\overrightarrow{AC}$ and also find their magnitudes. Now, use the section formula of internal division method, $\overset{\to }{\mathop{r}}\,=\dfrac{m\overset{\to }{\mathop{b}}\,+n\overset{\to }{\mathop{a}}\,}{m+n}$, substitute the obtained values and get the result.
Complete step-by-step solution:
Let us first draw the $\Delta ABC$ denoting the vectors A as $4\widehat{i}+7\widehat{j}+8\widehat{k}$, B as $2\widehat{i}+3\widehat{j}+4\widehat{k}$ and C as $2\widehat{i}+5\widehat{j}+7\widehat{k}$ and a bisector of $\angle A$ which meets the side BC at a point D.
Since AD bisects the angle $\angle A$ and divides BC in the ratio AB : BC. First, let us find the vectors $\overrightarrow{AB}$ and $\overrightarrow{AC}$,
$\begin{align}
& \overrightarrow{AB}=\left( 2\widehat{i}+3\widehat{j}+4\widehat{k} \right)-\left( 4\widehat{i}+7\widehat{j}+8\widehat{k} \right) \\
& \Rightarrow \overrightarrow{AB}=\left( 2\widehat{i}+3\widehat{j}+4\widehat{k} \right)-4\widehat{i}-7\widehat{j}-8\widehat{k} \\
& \Rightarrow \overrightarrow{AB}=-2\widehat{i}-4\widehat{j}-4\widehat{k} \\
\end{align}$
Similarly, let us find the vector $\overrightarrow{AC}$,
$\begin{align}
& \overrightarrow{AC}=\left( 2\widehat{i}+5\widehat{j}+7\widehat{k} \right)-\left( 4\widehat{i}+7\widehat{j}+8\widehat{k} \right) \\
& \Rightarrow \overrightarrow{AC}=2\widehat{i}+5\widehat{j}+7\widehat{k}-4\widehat{i}-7\widehat{j}-8\widehat{k} \\
& \Rightarrow \overrightarrow{AC}=-2\widehat{i}-2\widehat{j}-\widehat{k} \\
\end{align}$
Now, let us find the magnitude of the vectors $\overrightarrow{AB}$ and $\overrightarrow{AC}$,
$\begin{align}
& \left| \overrightarrow{AB} \right|=\sqrt{{{\left( -2 \right)}^{2}}+{{\left( -4 \right)}^{2}}+{{\left( -4 \right)}^{2}}} \\
& \Rightarrow \left| \overrightarrow{AB} \right|=\sqrt{4+16+16} \\
& \Rightarrow \left| \overrightarrow{AB} \right|=\sqrt{36} \\
& \Rightarrow \left| \overrightarrow{AB} \right|=6 \\
\end{align}$
Similarly, the magnitude of vector $\overrightarrow{AC}$ will be,
$\begin{align}
& \left| \overrightarrow{AC} \right|=\sqrt{{{\left( -2 \right)}^{2}}+{{\left( -2 \right)}^{2}}+{{\left( -1 \right)}^{2}}} \\
& \Rightarrow \left| \overrightarrow{AC} \right|=\sqrt{4+4+1} \\
& \Rightarrow \left| \overrightarrow{AC} \right|=\sqrt{9} \\
& \Rightarrow \left| \overrightarrow{AC} \right|=3 \\
\end{align}$
By using section formula of internal division method, we know,
$\overset{\to }{\mathop{r}}\,=\dfrac{m\overset{\to }{\mathop{b}}\,+n\overset{\to }{\mathop{a}}\,}{m+n}\ldots \ldots \ldots \left( i \right)$
Here, according to the above expression, we have,
$\begin{align}
& m=\left| \overleftrightarrow{AB} \right|=6 \\
& n=\left| \overleftrightarrow{AC} \right|=3 \\
\end{align}$
Let us consider $\overset{\to }{\mathop{a}}\,$ as $\overset{\to }{\mathop{B}}\,$ and $\overset{\to }{\mathop{b}}\,$ as $\overset{\to }{\mathop{C}}\,$ and $\overset{\to }{\mathop{r}}\,$ as $\overset{\to }{\mathop{D}}\,$. Therefore, we get,
$\overset{\to }{\mathop{a}}\,=2\widehat{i}+3\widehat{j}+4\widehat{k}$ and $\overset{\to }{\mathop{b}}\,=2\widehat{i}+5\widehat{j}+7\widehat{k}$
Now, when we substitute the values of m and n, the vectors $\overset{\to }{\mathop{a}}\,$ and $\overset{\to }{\mathop{b}}\,$ in the equation (i), we will get the position vector of D, which is,
$\begin{align}
& \overset{\to }{\mathop{D}}\,=\dfrac{6\left( 2\widehat{i}+5\widehat{j}+7\widehat{k} \right)+3\left( 2\widehat{i}+3\widehat{j}+4\widehat{k} \right)}{6+3} \\
& \Rightarrow \overset{\to }{\mathop{D}}\,=\dfrac{3\left[ 2\left( 2\widehat{i}+5\widehat{j}+7\widehat{k} \right)+\left( 2\widehat{i}+3\widehat{j}+4\widehat{k} \right) \right]}{9} \\
& \Rightarrow \overset{\to }{\mathop{D}}\,=\dfrac{1}{3}\left[ 4\widehat{i}+10\widehat{j}+14\widehat{k}+2\widehat{i}+3\widehat{j}+4\widehat{k} \right] \\
& \Rightarrow \overset{\to }{\mathop{D}}\,=\dfrac{1}{3}\left[ 6\widehat{i}+13\widehat{j}+18\widehat{k} \right] \\
\end{align}$
Therefore, the position vector of D is $\dfrac{1}{3}\left[ 6\widehat{i}+13\widehat{j}+18\widehat{k} \right]$.
Hence, the correct option is option B.
Note: In this question, always draw the diagram which makes it easy to understand the question. You also need to know, how to get the position vectors and how to find the magnitude of the vectors. The vector in the form of I, j, k represents the position of a vector in three-dimensional graph y x, y, z respectively.
Complete step-by-step solution:
Let us first draw the $\Delta ABC$ denoting the vectors A as $4\widehat{i}+7\widehat{j}+8\widehat{k}$, B as $2\widehat{i}+3\widehat{j}+4\widehat{k}$ and C as $2\widehat{i}+5\widehat{j}+7\widehat{k}$ and a bisector of $\angle A$ which meets the side BC at a point D.

Since AD bisects the angle $\angle A$ and divides BC in the ratio AB : BC. First, let us find the vectors $\overrightarrow{AB}$ and $\overrightarrow{AC}$,
$\begin{align}
& \overrightarrow{AB}=\left( 2\widehat{i}+3\widehat{j}+4\widehat{k} \right)-\left( 4\widehat{i}+7\widehat{j}+8\widehat{k} \right) \\
& \Rightarrow \overrightarrow{AB}=\left( 2\widehat{i}+3\widehat{j}+4\widehat{k} \right)-4\widehat{i}-7\widehat{j}-8\widehat{k} \\
& \Rightarrow \overrightarrow{AB}=-2\widehat{i}-4\widehat{j}-4\widehat{k} \\
\end{align}$
Similarly, let us find the vector $\overrightarrow{AC}$,
$\begin{align}
& \overrightarrow{AC}=\left( 2\widehat{i}+5\widehat{j}+7\widehat{k} \right)-\left( 4\widehat{i}+7\widehat{j}+8\widehat{k} \right) \\
& \Rightarrow \overrightarrow{AC}=2\widehat{i}+5\widehat{j}+7\widehat{k}-4\widehat{i}-7\widehat{j}-8\widehat{k} \\
& \Rightarrow \overrightarrow{AC}=-2\widehat{i}-2\widehat{j}-\widehat{k} \\
\end{align}$
Now, let us find the magnitude of the vectors $\overrightarrow{AB}$ and $\overrightarrow{AC}$,
$\begin{align}
& \left| \overrightarrow{AB} \right|=\sqrt{{{\left( -2 \right)}^{2}}+{{\left( -4 \right)}^{2}}+{{\left( -4 \right)}^{2}}} \\
& \Rightarrow \left| \overrightarrow{AB} \right|=\sqrt{4+16+16} \\
& \Rightarrow \left| \overrightarrow{AB} \right|=\sqrt{36} \\
& \Rightarrow \left| \overrightarrow{AB} \right|=6 \\
\end{align}$
Similarly, the magnitude of vector $\overrightarrow{AC}$ will be,
$\begin{align}
& \left| \overrightarrow{AC} \right|=\sqrt{{{\left( -2 \right)}^{2}}+{{\left( -2 \right)}^{2}}+{{\left( -1 \right)}^{2}}} \\
& \Rightarrow \left| \overrightarrow{AC} \right|=\sqrt{4+4+1} \\
& \Rightarrow \left| \overrightarrow{AC} \right|=\sqrt{9} \\
& \Rightarrow \left| \overrightarrow{AC} \right|=3 \\
\end{align}$
By using section formula of internal division method, we know,
$\overset{\to }{\mathop{r}}\,=\dfrac{m\overset{\to }{\mathop{b}}\,+n\overset{\to }{\mathop{a}}\,}{m+n}\ldots \ldots \ldots \left( i \right)$
Here, according to the above expression, we have,
$\begin{align}
& m=\left| \overleftrightarrow{AB} \right|=6 \\
& n=\left| \overleftrightarrow{AC} \right|=3 \\
\end{align}$
Let us consider $\overset{\to }{\mathop{a}}\,$ as $\overset{\to }{\mathop{B}}\,$ and $\overset{\to }{\mathop{b}}\,$ as $\overset{\to }{\mathop{C}}\,$ and $\overset{\to }{\mathop{r}}\,$ as $\overset{\to }{\mathop{D}}\,$. Therefore, we get,
$\overset{\to }{\mathop{a}}\,=2\widehat{i}+3\widehat{j}+4\widehat{k}$ and $\overset{\to }{\mathop{b}}\,=2\widehat{i}+5\widehat{j}+7\widehat{k}$
Now, when we substitute the values of m and n, the vectors $\overset{\to }{\mathop{a}}\,$ and $\overset{\to }{\mathop{b}}\,$ in the equation (i), we will get the position vector of D, which is,
$\begin{align}
& \overset{\to }{\mathop{D}}\,=\dfrac{6\left( 2\widehat{i}+5\widehat{j}+7\widehat{k} \right)+3\left( 2\widehat{i}+3\widehat{j}+4\widehat{k} \right)}{6+3} \\
& \Rightarrow \overset{\to }{\mathop{D}}\,=\dfrac{3\left[ 2\left( 2\widehat{i}+5\widehat{j}+7\widehat{k} \right)+\left( 2\widehat{i}+3\widehat{j}+4\widehat{k} \right) \right]}{9} \\
& \Rightarrow \overset{\to }{\mathop{D}}\,=\dfrac{1}{3}\left[ 4\widehat{i}+10\widehat{j}+14\widehat{k}+2\widehat{i}+3\widehat{j}+4\widehat{k} \right] \\
& \Rightarrow \overset{\to }{\mathop{D}}\,=\dfrac{1}{3}\left[ 6\widehat{i}+13\widehat{j}+18\widehat{k} \right] \\
\end{align}$
Therefore, the position vector of D is $\dfrac{1}{3}\left[ 6\widehat{i}+13\widehat{j}+18\widehat{k} \right]$.
Hence, the correct option is option B.
Note: In this question, always draw the diagram which makes it easy to understand the question. You also need to know, how to get the position vectors and how to find the magnitude of the vectors. The vector in the form of I, j, k represents the position of a vector in three-dimensional graph y x, y, z respectively.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
Why is insulin not administered orally to a diabetic class 12 biology CBSE

The total number of isomers considering both the structural class 12 chemistry CBSE

What is the Full Form of PVC, PET, HDPE, LDPE, PP and PS ?

How do you convert from joules to electron volts class 12 physics CBSE

Define Vant Hoff factor How is it related to the degree class 12 chemistry CBSE

The first microscope was invented by A Leeuwenhoek class 12 biology CBSE
