
If the points $ A\left( {x,2} \right),B\left( { - 3, - 4} \right) $ and $ C\left( {7, - 5} \right) $ are collinear, then the value of $ x $ is
A) $ - 63 $
B) $ 63 $
C) $ 60 $
D) $ - 60 $
Answer
546.3k+ views
Hint: Here, in order to solve this question, we will use the fact that three points are said to be collinear if the area of triangle formed using these three points is zero. Area of triangle, $ \vartriangle = \dfrac{1}{2}|\left( {\begin{array}{*{20}{c}}
1&1&1 \\
{{x_1}}&{{x_2}}&{{x_3}} \\
{{y_1}}&{{y_2}}&{{y_3}}
\end{array}} \right)| $
Through this way we can easily find out the value of $ x $ . In order to get started, let us first assume the given points from the question as $ \left( {{x_1},{y_1}} \right) = \left( {x,2} \right),\left( {{x_2},{y_2}} \right) = \left( { - 3, - 4} \right),\left( {{x_3},{y_3}} \right) = \left( {7, - 5} \right) $ . Now substitute these properly in the determinant and equate it to zero and find the value of $ x $ .
Complete step by step solution:
Given that point $ \left( {x,2} \right),\left( { - 3, - 4} \right) $ and $ \left( {7, - 5} \right) $ are collinear.
We know that when three points are collinear, it means they lie on the same line. Such a set of points cannot form a triangle where all three points must lie on different lines. So, we can say that the area of the triangle formed using these three points will be equal to zero.
Area of triangle, $ \vartriangle = \dfrac{1}{2}|\left( {\begin{array}{*{20}{c}}
1&1&1 \\
{{x_1}}&{{x_2}}&{{x_3}} \\
{{y_1}}&{{y_2}}&{{y_3}}
\end{array}} \right)| $ , where $ \left( {{x_1},{y_1}} \right) = \left( {x,2} \right),\left( {{x_2},{y_2}} \right) = \left( { - 3, - 4} \right),\left( {{x_3},{y_3}} \right) = \left( {7, - 5} \right) $ .
Given that points are collinear $ \Rightarrow \vartriangle = 0 $
Substituting the value in $ \vartriangle $ we get,
$ \Rightarrow \vartriangle = \dfrac{1}{2}|\left( {\begin{array}{*{20}{c}}
1&1&1 \\
x&{ - 3}&7 \\
2&{ - 4}&{ - 5}
\end{array}} \right)| = 0 $
Opening the determinant along first column we get,
$
\Rightarrow \dfrac{1}{2}|\left( {\begin{array}{*{20}{c}}
1&1&1 \\
x&{ - 3}&7 \\
2&{ - 4}&{ - 5}
\end{array}} \right)| = 0 \\
\Rightarrow \dfrac{1}{2}\left[ {1\left( {\left( { - 3} \right)\left( { - 5} \right) - \left( 7 \right)\left( { - 4} \right)} \right) - 1\left( {\left( { - 5} \right)\left( x \right) - \left( 7 \right)\left( 2 \right)} \right) + 1\left( {\left( { - 4} \right)\left( x \right) - \left( { - 3} \right)\left( 2 \right)} \right)} \right] = 0 \\
\Rightarrow \dfrac{1}{2}\left[ {1\left( {15 + 28} \right) - 1\left( { - 5x - 14} \right) + 1\left( { - 4x + 6} \right)} \right] = 0 \\
$
$
\Rightarrow \dfrac{1}{2}\left[ {43 + 5x + 14 - 4x + 6} \right] = 0 \\
\Rightarrow \dfrac{1}{2}\left[ {x + 63} \right] = 0 \\
\Rightarrow x + 63 = 0 \\
\Rightarrow x = - 63 \\
$
The value of $ x $ for which the points $ \left( {x,2} \right),\left( { - 3, - 4} \right) $ and $ \left( {7, - 5} \right) $ are collinear is $ - 63 $ .
Hence, the correct answer is option (A).
Note: This question can also be solved by opening the determinant directly without using the area of triangle in determinant form. We can directly use, $ \dfrac{1}{2}\left[ {{x_1}\left( {{y_2} - {y_3}} \right) + {x_2}\left( {{y_3} - {y_1}} \right) + {x_3}\left( {{y_1} - {y_2}} \right)} \right] = 0 $ and substitute value of $ \left( {{x_1},{y_1}} \right),\left( {{x_2},{y_2}} \right) $ and $ \left( {{x_3},{y_3}} \right) $ directly to get the answer. The answer anyway would be the same. Students can also plot the points and check for themselves whether they are collinear or not.
1&1&1 \\
{{x_1}}&{{x_2}}&{{x_3}} \\
{{y_1}}&{{y_2}}&{{y_3}}
\end{array}} \right)| $
Through this way we can easily find out the value of $ x $ . In order to get started, let us first assume the given points from the question as $ \left( {{x_1},{y_1}} \right) = \left( {x,2} \right),\left( {{x_2},{y_2}} \right) = \left( { - 3, - 4} \right),\left( {{x_3},{y_3}} \right) = \left( {7, - 5} \right) $ . Now substitute these properly in the determinant and equate it to zero and find the value of $ x $ .
Complete step by step solution:
Given that point $ \left( {x,2} \right),\left( { - 3, - 4} \right) $ and $ \left( {7, - 5} \right) $ are collinear.
We know that when three points are collinear, it means they lie on the same line. Such a set of points cannot form a triangle where all three points must lie on different lines. So, we can say that the area of the triangle formed using these three points will be equal to zero.
Area of triangle, $ \vartriangle = \dfrac{1}{2}|\left( {\begin{array}{*{20}{c}}
1&1&1 \\
{{x_1}}&{{x_2}}&{{x_3}} \\
{{y_1}}&{{y_2}}&{{y_3}}
\end{array}} \right)| $ , where $ \left( {{x_1},{y_1}} \right) = \left( {x,2} \right),\left( {{x_2},{y_2}} \right) = \left( { - 3, - 4} \right),\left( {{x_3},{y_3}} \right) = \left( {7, - 5} \right) $ .
Given that points are collinear $ \Rightarrow \vartriangle = 0 $
Substituting the value in $ \vartriangle $ we get,
$ \Rightarrow \vartriangle = \dfrac{1}{2}|\left( {\begin{array}{*{20}{c}}
1&1&1 \\
x&{ - 3}&7 \\
2&{ - 4}&{ - 5}
\end{array}} \right)| = 0 $
Opening the determinant along first column we get,
$
\Rightarrow \dfrac{1}{2}|\left( {\begin{array}{*{20}{c}}
1&1&1 \\
x&{ - 3}&7 \\
2&{ - 4}&{ - 5}
\end{array}} \right)| = 0 \\
\Rightarrow \dfrac{1}{2}\left[ {1\left( {\left( { - 3} \right)\left( { - 5} \right) - \left( 7 \right)\left( { - 4} \right)} \right) - 1\left( {\left( { - 5} \right)\left( x \right) - \left( 7 \right)\left( 2 \right)} \right) + 1\left( {\left( { - 4} \right)\left( x \right) - \left( { - 3} \right)\left( 2 \right)} \right)} \right] = 0 \\
\Rightarrow \dfrac{1}{2}\left[ {1\left( {15 + 28} \right) - 1\left( { - 5x - 14} \right) + 1\left( { - 4x + 6} \right)} \right] = 0 \\
$
$
\Rightarrow \dfrac{1}{2}\left[ {43 + 5x + 14 - 4x + 6} \right] = 0 \\
\Rightarrow \dfrac{1}{2}\left[ {x + 63} \right] = 0 \\
\Rightarrow x + 63 = 0 \\
\Rightarrow x = - 63 \\
$
The value of $ x $ for which the points $ \left( {x,2} \right),\left( { - 3, - 4} \right) $ and $ \left( {7, - 5} \right) $ are collinear is $ - 63 $ .
Hence, the correct answer is option (A).
Note: This question can also be solved by opening the determinant directly without using the area of triangle in determinant form. We can directly use, $ \dfrac{1}{2}\left[ {{x_1}\left( {{y_2} - {y_3}} \right) + {x_2}\left( {{y_3} - {y_1}} \right) + {x_3}\left( {{y_1} - {y_2}} \right)} \right] = 0 $ and substitute value of $ \left( {{x_1},{y_1}} \right),\left( {{x_2},{y_2}} \right) $ and $ \left( {{x_3},{y_3}} \right) $ directly to get the answer. The answer anyway would be the same. Students can also plot the points and check for themselves whether they are collinear or not.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Explain zero factorial class 11 maths CBSE

What organs are located on the left side of your body class 11 biology CBSE

Draw a diagram of nephron and explain its structur class 11 biology CBSE

How do I convert ms to kmh Give an example class 11 physics CBSE

