
If the points \[A\left( 1,-2,2 \right),B\left( 3,1,1 \right),C\left( -1,p,3 \right)\] are collinear, then find the value of p.
Answer
481.5k+ views
Hint: We start solving the problem by recalling the condition of collinearity of three points $\left( a,b,c \right)$, $\left( d,e,f \right)$ and $\left( g,h,i \right)$ as $\left| \begin{matrix}
a & b & c \\
d & e & f \\
g & h & i \\
\end{matrix} \right|=0$. We then substitute the coordinates of the given points in this determinant and then expand it. We then make the necessary calculations to get the required value of p.
Complete step-by-step answer:
According to the problem, we are given the points \[A\left( 1,-2,2 \right)\], \[B\left( 3,1,1 \right)\], \[C\left( -1,p,3 \right)\].
As we already know that the points which lie on the same line are called collinear points and the condition of collinearity for three points $\left( a,b,c \right)$, $\left( d,e,f \right)$ and $\left( g,h,i \right)$ is $\left| \begin{matrix}
a & b & c \\
d & e & f \\
g & h & i \\
\end{matrix} \right|=0$.
So, let us substitute the coordinates of the points \[A\left( 1,-2,2 \right)\], \[B\left( 3,1,1 \right)\], \[C\left( -1,p,3 \right)\] in the determinant.
So, we get $\left| \begin{matrix}
1 & -2 & 2 \\
3 & 1 & 1 \\
-1 & p & 3 \\
\end{matrix} \right|=0$.
$\Rightarrow 1\times \left| \begin{matrix}
1 & 1 \\
p & 3 \\
\end{matrix} \right|-\left( -2 \right)\times \left| \begin{matrix}
3 & 1 \\
-1 & 3 \\
\end{matrix} \right|+2\times \left| \begin{matrix}
3 & 1 \\
-1 & p \\
\end{matrix} \right|=0$.
$\Rightarrow 1\times \left( \left( 1\times 3 \right)-\left( 1\times p \right) \right)-\left( -2 \right)\times \left( \left( 3\times 3 \right)-\left( -1\times 1 \right) \right)+2\times \left( \left( 3\times p \right)-\left( -1\times 1 \right) \right)=0$
$\Rightarrow \left( 3-p \right)+\left( 2 \right)\times \left( \left( 9 \right)-\left( -1 \right) \right)+2\times \left( \left( 3p \right)-\left( -1 \right) \right)=0$.
$\Rightarrow 3-p+\left( 2 \right)\times \left( 10 \right)+2\times \left( 3p+1 \right)=0$.
$\Rightarrow 3-p+20+6p+2=0$.
$\Rightarrow 5p=-25$.
$\Rightarrow p=\dfrac{-25}{5}$.
$\Rightarrow p=-5$.
We have found the value of p as 5. Hence, The value of p as 5.
Note: This is one of the ways to solve for the value of p if the given points are collinear. We can also solve this problem by using the fact that the D.R’s (Direction Ratios) of the line segment AB is multiple of D.R’s (Direction Ratios) of the line segment BC as shown below.
We know that D.R’s (Direction Ratios) of the line joining points $\left( a,b,c \right)$ and $\left( d,e,f \right)$ is $\left( d-a,e-b,f-c \right)$.
So, the D.R’s (Direction Ratios) of the line segment AB = $\left( 3-1,1+2,1-2 \right)=\left( 2,3,-1 \right)$.
Now, the D.R’s (Direction Ratios) of the line segment BC = $\left( -1-3,p-1,3-1 \right)=\left( -4,p-1,2 \right)$
Now, we have D.R’s of the line segment AB = $\lambda \times $ (D.R’s of the line segment BC).
So, we have $\left( 2,3,-1 \right)=\lambda \times \left( -4,p-1,2 \right)$.
$\Rightarrow \left( 2,3,-1 \right)=\left( -4\lambda ,p\lambda -\lambda ,2\lambda \right)$.
So, we have $-4\lambda =2$.
$\lambda =\dfrac{2}{-4}=\dfrac{-1}{2}$.
Now, we have $p\left( \dfrac{-1}{2} \right)-\left( \dfrac{-1}{2} \right)=3$.
$\Rightarrow \dfrac{-p+1}{2}=3$.
$\Rightarrow -p+1=6$.
$\Rightarrow p=-5$.
a & b & c \\
d & e & f \\
g & h & i \\
\end{matrix} \right|=0$. We then substitute the coordinates of the given points in this determinant and then expand it. We then make the necessary calculations to get the required value of p.
Complete step-by-step answer:
According to the problem, we are given the points \[A\left( 1,-2,2 \right)\], \[B\left( 3,1,1 \right)\], \[C\left( -1,p,3 \right)\].
As we already know that the points which lie on the same line are called collinear points and the condition of collinearity for three points $\left( a,b,c \right)$, $\left( d,e,f \right)$ and $\left( g,h,i \right)$ is $\left| \begin{matrix}
a & b & c \\
d & e & f \\
g & h & i \\
\end{matrix} \right|=0$.

So, let us substitute the coordinates of the points \[A\left( 1,-2,2 \right)\], \[B\left( 3,1,1 \right)\], \[C\left( -1,p,3 \right)\] in the determinant.
So, we get $\left| \begin{matrix}
1 & -2 & 2 \\
3 & 1 & 1 \\
-1 & p & 3 \\
\end{matrix} \right|=0$.
$\Rightarrow 1\times \left| \begin{matrix}
1 & 1 \\
p & 3 \\
\end{matrix} \right|-\left( -2 \right)\times \left| \begin{matrix}
3 & 1 \\
-1 & 3 \\
\end{matrix} \right|+2\times \left| \begin{matrix}
3 & 1 \\
-1 & p \\
\end{matrix} \right|=0$.
$\Rightarrow 1\times \left( \left( 1\times 3 \right)-\left( 1\times p \right) \right)-\left( -2 \right)\times \left( \left( 3\times 3 \right)-\left( -1\times 1 \right) \right)+2\times \left( \left( 3\times p \right)-\left( -1\times 1 \right) \right)=0$
$\Rightarrow \left( 3-p \right)+\left( 2 \right)\times \left( \left( 9 \right)-\left( -1 \right) \right)+2\times \left( \left( 3p \right)-\left( -1 \right) \right)=0$.
$\Rightarrow 3-p+\left( 2 \right)\times \left( 10 \right)+2\times \left( 3p+1 \right)=0$.
$\Rightarrow 3-p+20+6p+2=0$.
$\Rightarrow 5p=-25$.
$\Rightarrow p=\dfrac{-25}{5}$.
$\Rightarrow p=-5$.
We have found the value of p as 5. Hence, The value of p as 5.
Note: This is one of the ways to solve for the value of p if the given points are collinear. We can also solve this problem by using the fact that the D.R’s (Direction Ratios) of the line segment AB is multiple of D.R’s (Direction Ratios) of the line segment BC as shown below.
We know that D.R’s (Direction Ratios) of the line joining points $\left( a,b,c \right)$ and $\left( d,e,f \right)$ is $\left( d-a,e-b,f-c \right)$.
So, the D.R’s (Direction Ratios) of the line segment AB = $\left( 3-1,1+2,1-2 \right)=\left( 2,3,-1 \right)$.
Now, the D.R’s (Direction Ratios) of the line segment BC = $\left( -1-3,p-1,3-1 \right)=\left( -4,p-1,2 \right)$
Now, we have D.R’s of the line segment AB = $\lambda \times $ (D.R’s of the line segment BC).
So, we have $\left( 2,3,-1 \right)=\lambda \times \left( -4,p-1,2 \right)$.
$\Rightarrow \left( 2,3,-1 \right)=\left( -4\lambda ,p\lambda -\lambda ,2\lambda \right)$.
So, we have $-4\lambda =2$.
$\lambda =\dfrac{2}{-4}=\dfrac{-1}{2}$.
Now, we have $p\left( \dfrac{-1}{2} \right)-\left( \dfrac{-1}{2} \right)=3$.
$\Rightarrow \dfrac{-p+1}{2}=3$.
$\Rightarrow -p+1=6$.
$\Rightarrow p=-5$.
Recently Updated Pages
The correct geometry and hybridization for XeF4 are class 11 chemistry CBSE

Water softening by Clarks process uses ACalcium bicarbonate class 11 chemistry CBSE

With reference to graphite and diamond which of the class 11 chemistry CBSE

A certain household has consumed 250 units of energy class 11 physics CBSE

The lightest metal known is A beryllium B lithium C class 11 chemistry CBSE

What is the formula mass of the iodine molecule class 11 chemistry CBSE

Trending doubts
State the laws of reflection of light

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What is the modal class for the following table given class 11 maths CBSE

How do I convert ms to kmh Give an example class 11 physics CBSE

Give an example of a solid solution in which the solute class 11 chemistry CBSE
