
If the points \[A\left( 1,-2,2 \right),B\left( 3,1,1 \right),C\left( -1,p,3 \right)\] are collinear, then find the value of p.
Answer
565.5k+ views
Hint: We start solving the problem by recalling the condition of collinearity of three points $\left( a,b,c \right)$, $\left( d,e,f \right)$ and $\left( g,h,i \right)$ as $\left| \begin{matrix}
a & b & c \\
d & e & f \\
g & h & i \\
\end{matrix} \right|=0$. We then substitute the coordinates of the given points in this determinant and then expand it. We then make the necessary calculations to get the required value of p.
Complete step-by-step answer:
According to the problem, we are given the points \[A\left( 1,-2,2 \right)\], \[B\left( 3,1,1 \right)\], \[C\left( -1,p,3 \right)\].
As we already know that the points which lie on the same line are called collinear points and the condition of collinearity for three points $\left( a,b,c \right)$, $\left( d,e,f \right)$ and $\left( g,h,i \right)$ is $\left| \begin{matrix}
a & b & c \\
d & e & f \\
g & h & i \\
\end{matrix} \right|=0$.
So, let us substitute the coordinates of the points \[A\left( 1,-2,2 \right)\], \[B\left( 3,1,1 \right)\], \[C\left( -1,p,3 \right)\] in the determinant.
So, we get $\left| \begin{matrix}
1 & -2 & 2 \\
3 & 1 & 1 \\
-1 & p & 3 \\
\end{matrix} \right|=0$.
$\Rightarrow 1\times \left| \begin{matrix}
1 & 1 \\
p & 3 \\
\end{matrix} \right|-\left( -2 \right)\times \left| \begin{matrix}
3 & 1 \\
-1 & 3 \\
\end{matrix} \right|+2\times \left| \begin{matrix}
3 & 1 \\
-1 & p \\
\end{matrix} \right|=0$.
$\Rightarrow 1\times \left( \left( 1\times 3 \right)-\left( 1\times p \right) \right)-\left( -2 \right)\times \left( \left( 3\times 3 \right)-\left( -1\times 1 \right) \right)+2\times \left( \left( 3\times p \right)-\left( -1\times 1 \right) \right)=0$
$\Rightarrow \left( 3-p \right)+\left( 2 \right)\times \left( \left( 9 \right)-\left( -1 \right) \right)+2\times \left( \left( 3p \right)-\left( -1 \right) \right)=0$.
$\Rightarrow 3-p+\left( 2 \right)\times \left( 10 \right)+2\times \left( 3p+1 \right)=0$.
$\Rightarrow 3-p+20+6p+2=0$.
$\Rightarrow 5p=-25$.
$\Rightarrow p=\dfrac{-25}{5}$.
$\Rightarrow p=-5$.
We have found the value of p as 5. Hence, The value of p as 5.
Note: This is one of the ways to solve for the value of p if the given points are collinear. We can also solve this problem by using the fact that the D.R’s (Direction Ratios) of the line segment AB is multiple of D.R’s (Direction Ratios) of the line segment BC as shown below.
We know that D.R’s (Direction Ratios) of the line joining points $\left( a,b,c \right)$ and $\left( d,e,f \right)$ is $\left( d-a,e-b,f-c \right)$.
So, the D.R’s (Direction Ratios) of the line segment AB = $\left( 3-1,1+2,1-2 \right)=\left( 2,3,-1 \right)$.
Now, the D.R’s (Direction Ratios) of the line segment BC = $\left( -1-3,p-1,3-1 \right)=\left( -4,p-1,2 \right)$
Now, we have D.R’s of the line segment AB = $\lambda \times $ (D.R’s of the line segment BC).
So, we have $\left( 2,3,-1 \right)=\lambda \times \left( -4,p-1,2 \right)$.
$\Rightarrow \left( 2,3,-1 \right)=\left( -4\lambda ,p\lambda -\lambda ,2\lambda \right)$.
So, we have $-4\lambda =2$.
$\lambda =\dfrac{2}{-4}=\dfrac{-1}{2}$.
Now, we have $p\left( \dfrac{-1}{2} \right)-\left( \dfrac{-1}{2} \right)=3$.
$\Rightarrow \dfrac{-p+1}{2}=3$.
$\Rightarrow -p+1=6$.
$\Rightarrow p=-5$.
a & b & c \\
d & e & f \\
g & h & i \\
\end{matrix} \right|=0$. We then substitute the coordinates of the given points in this determinant and then expand it. We then make the necessary calculations to get the required value of p.
Complete step-by-step answer:
According to the problem, we are given the points \[A\left( 1,-2,2 \right)\], \[B\left( 3,1,1 \right)\], \[C\left( -1,p,3 \right)\].
As we already know that the points which lie on the same line are called collinear points and the condition of collinearity for three points $\left( a,b,c \right)$, $\left( d,e,f \right)$ and $\left( g,h,i \right)$ is $\left| \begin{matrix}
a & b & c \\
d & e & f \\
g & h & i \\
\end{matrix} \right|=0$.
So, let us substitute the coordinates of the points \[A\left( 1,-2,2 \right)\], \[B\left( 3,1,1 \right)\], \[C\left( -1,p,3 \right)\] in the determinant.
So, we get $\left| \begin{matrix}
1 & -2 & 2 \\
3 & 1 & 1 \\
-1 & p & 3 \\
\end{matrix} \right|=0$.
$\Rightarrow 1\times \left| \begin{matrix}
1 & 1 \\
p & 3 \\
\end{matrix} \right|-\left( -2 \right)\times \left| \begin{matrix}
3 & 1 \\
-1 & 3 \\
\end{matrix} \right|+2\times \left| \begin{matrix}
3 & 1 \\
-1 & p \\
\end{matrix} \right|=0$.
$\Rightarrow 1\times \left( \left( 1\times 3 \right)-\left( 1\times p \right) \right)-\left( -2 \right)\times \left( \left( 3\times 3 \right)-\left( -1\times 1 \right) \right)+2\times \left( \left( 3\times p \right)-\left( -1\times 1 \right) \right)=0$
$\Rightarrow \left( 3-p \right)+\left( 2 \right)\times \left( \left( 9 \right)-\left( -1 \right) \right)+2\times \left( \left( 3p \right)-\left( -1 \right) \right)=0$.
$\Rightarrow 3-p+\left( 2 \right)\times \left( 10 \right)+2\times \left( 3p+1 \right)=0$.
$\Rightarrow 3-p+20+6p+2=0$.
$\Rightarrow 5p=-25$.
$\Rightarrow p=\dfrac{-25}{5}$.
$\Rightarrow p=-5$.
We have found the value of p as 5. Hence, The value of p as 5.
Note: This is one of the ways to solve for the value of p if the given points are collinear. We can also solve this problem by using the fact that the D.R’s (Direction Ratios) of the line segment AB is multiple of D.R’s (Direction Ratios) of the line segment BC as shown below.
We know that D.R’s (Direction Ratios) of the line joining points $\left( a,b,c \right)$ and $\left( d,e,f \right)$ is $\left( d-a,e-b,f-c \right)$.
So, the D.R’s (Direction Ratios) of the line segment AB = $\left( 3-1,1+2,1-2 \right)=\left( 2,3,-1 \right)$.
Now, the D.R’s (Direction Ratios) of the line segment BC = $\left( -1-3,p-1,3-1 \right)=\left( -4,p-1,2 \right)$
Now, we have D.R’s of the line segment AB = $\lambda \times $ (D.R’s of the line segment BC).
So, we have $\left( 2,3,-1 \right)=\lambda \times \left( -4,p-1,2 \right)$.
$\Rightarrow \left( 2,3,-1 \right)=\left( -4\lambda ,p\lambda -\lambda ,2\lambda \right)$.
So, we have $-4\lambda =2$.
$\lambda =\dfrac{2}{-4}=\dfrac{-1}{2}$.
Now, we have $p\left( \dfrac{-1}{2} \right)-\left( \dfrac{-1}{2} \right)=3$.
$\Rightarrow \dfrac{-p+1}{2}=3$.
$\Rightarrow -p+1=6$.
$\Rightarrow p=-5$.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

