
If the points $A\left( {0,0} \right),B\left( {12,0} \right),C\left( {12,2} \right),D\left( {6,7} \right)$ and $E\left( {0,5} \right)$ are the vertices of the pentagon $ABCDE$, then it’s area (in square units) is
1) $58$
2) $60$
3) $61$
4) $62$
5) $63$
Answer
507k+ views
Hint: In the question, we are given the vertices of a pentagon and are required to find the area of the pentagon using the same. So, to find the area of the pentagon we will use the formula to find the area of a pentagon if it’s vertices are given, which is,
Area of pentagon, $ = \dfrac{1}{2}\left[ {\left( {{x_1}{y_2} + {x_2}{y_3} + {x_3}{y_4} + {x_4}{y_5} + {x_5}{y_1}} \right) - \left( {{y_1}{x_2} + {y_2}{x_3} + {y_3}{x_4} + {y_4}{x_5} + {y_5}{x_1}} \right)} \right]$
Using this formula for the area of the pentagon, we will get the required answer.
Complete step-by-step solution:
Given, the vertices of the pentagon are,
$A\left( {0,0} \right),B\left( {12,0} \right),C\left( {12,2} \right),D\left( {6,7} \right),E\left( {0,5} \right)$
We are to find the area of the pentagon $ABCDE$.
The formula to find the area of pentagon if vertices are given is,
Area of pentagon $ = \dfrac{1}{2}\left[ {\left( {{x_1}{y_2} + {x_2}{y_3} + {x_3}{y_4} + {x_4}{y_5} + {x_5}{y_1}} \right) - \left( {{y_1}{x_2} + {y_2}{x_3} + {y_3}{x_4} + {y_4}{x_5} + {y_5}{x_1}} \right)} \right]$
So, we can write the given points as,
$A\left( {{x_1},{y_1}} \right) = \left( {0,0} \right)$
$B\left( {{x_2},{y_2}} \right) = \left( {12,0} \right)$
$C\left( {{x_3},{y_3}} \right) = \left( {12,2} \right)$
$D\left( {{x_4},{y_4}} \right) = \left( {6,7} \right)$
$E\left( {{x_5},{y_5}} \right) = \left( {0,5} \right)$
Now, substituting the coordinates of all the points in the formula to find the area, we get,
Area of pentagon $ = \dfrac{1}{2}\left[ {\left( {{x_1}{y_2} + {x_2}{y_3} + {x_3}{y_4} + {x_4}{y_5} + {x_5}{y_1}} \right) - \left( {{y_1}{x_2} + {y_2}{x_3} + {y_3}{x_4} + {y_4}{x_5} + {y_5}{x_1}} \right)} \right]$
$ = \dfrac{1}{2}\left[ {\left\{ {\left( 0 \right)\left( 0 \right) + \left( {12} \right)\left( 2 \right) + \left( {12} \right)\left( 7 \right) + \left( 6 \right)\left( 5 \right) + \left( 0 \right)\left( 0 \right)} \right\} - \left\{ {\left( 0 \right)\left( {12} \right) + \left( 0 \right)\left( {12} \right) + \left( 2 \right)\left( 6 \right) + \left( 7 \right)\left( 0 \right) + \left( 5 \right)\left( 0 \right)} \right\}} \right]$Now, opening the brackets, we get,
$ = \dfrac{1}{2}\left[ {\left\{ {0 + 24 + 84 + 30 + 0} \right\} - \left\{ {0 + 0 + 12 + 0 + 0} \right\}} \right]$
Now, simplifying the terms, we get,
$ = \dfrac{1}{2}\left[ {\left\{ {138} \right\} - \left\{ {12} \right\}} \right]$
Again, opening the brackets, we get,
$ = \dfrac{1}{2}\left[ {138 - 12} \right]$
Carrying out the calculations, we get,
$ = \dfrac{1}{2}\left( {126} \right)$
$ = 63$
Therefore, the area of the pentagon is $63$ sq. units.
Hence, the correct option is 5.
Note: The above problem can also be solved by finding the measure of the sides of the pentagon. If the sides of pentagon are equal, then we can find it’s area by using the formula,
Area of pentagon$ = \dfrac{1}{4}\sqrt {5\left( {5 + 2\sqrt 5 } \right)} {a^2}$
But, if the length of the sides of the pentagon are different, then using geometry we can divide the pentagon into three triangles and then find the length of the sides of those three triangles and use Heron’s formula to find the area of each triangle and then add their areas to get the area of the pentagon.
Area of pentagon, $ = \dfrac{1}{2}\left[ {\left( {{x_1}{y_2} + {x_2}{y_3} + {x_3}{y_4} + {x_4}{y_5} + {x_5}{y_1}} \right) - \left( {{y_1}{x_2} + {y_2}{x_3} + {y_3}{x_4} + {y_4}{x_5} + {y_5}{x_1}} \right)} \right]$
Using this formula for the area of the pentagon, we will get the required answer.
Complete step-by-step solution:
Given, the vertices of the pentagon are,
$A\left( {0,0} \right),B\left( {12,0} \right),C\left( {12,2} \right),D\left( {6,7} \right),E\left( {0,5} \right)$
We are to find the area of the pentagon $ABCDE$.
The formula to find the area of pentagon if vertices are given is,
Area of pentagon $ = \dfrac{1}{2}\left[ {\left( {{x_1}{y_2} + {x_2}{y_3} + {x_3}{y_4} + {x_4}{y_5} + {x_5}{y_1}} \right) - \left( {{y_1}{x_2} + {y_2}{x_3} + {y_3}{x_4} + {y_4}{x_5} + {y_5}{x_1}} \right)} \right]$
So, we can write the given points as,
$A\left( {{x_1},{y_1}} \right) = \left( {0,0} \right)$
$B\left( {{x_2},{y_2}} \right) = \left( {12,0} \right)$
$C\left( {{x_3},{y_3}} \right) = \left( {12,2} \right)$
$D\left( {{x_4},{y_4}} \right) = \left( {6,7} \right)$
$E\left( {{x_5},{y_5}} \right) = \left( {0,5} \right)$
Now, substituting the coordinates of all the points in the formula to find the area, we get,
Area of pentagon $ = \dfrac{1}{2}\left[ {\left( {{x_1}{y_2} + {x_2}{y_3} + {x_3}{y_4} + {x_4}{y_5} + {x_5}{y_1}} \right) - \left( {{y_1}{x_2} + {y_2}{x_3} + {y_3}{x_4} + {y_4}{x_5} + {y_5}{x_1}} \right)} \right]$
$ = \dfrac{1}{2}\left[ {\left\{ {\left( 0 \right)\left( 0 \right) + \left( {12} \right)\left( 2 \right) + \left( {12} \right)\left( 7 \right) + \left( 6 \right)\left( 5 \right) + \left( 0 \right)\left( 0 \right)} \right\} - \left\{ {\left( 0 \right)\left( {12} \right) + \left( 0 \right)\left( {12} \right) + \left( 2 \right)\left( 6 \right) + \left( 7 \right)\left( 0 \right) + \left( 5 \right)\left( 0 \right)} \right\}} \right]$Now, opening the brackets, we get,
$ = \dfrac{1}{2}\left[ {\left\{ {0 + 24 + 84 + 30 + 0} \right\} - \left\{ {0 + 0 + 12 + 0 + 0} \right\}} \right]$
Now, simplifying the terms, we get,
$ = \dfrac{1}{2}\left[ {\left\{ {138} \right\} - \left\{ {12} \right\}} \right]$
Again, opening the brackets, we get,
$ = \dfrac{1}{2}\left[ {138 - 12} \right]$
Carrying out the calculations, we get,
$ = \dfrac{1}{2}\left( {126} \right)$
$ = 63$
Therefore, the area of the pentagon is $63$ sq. units.
Hence, the correct option is 5.
Note: The above problem can also be solved by finding the measure of the sides of the pentagon. If the sides of pentagon are equal, then we can find it’s area by using the formula,
Area of pentagon$ = \dfrac{1}{4}\sqrt {5\left( {5 + 2\sqrt 5 } \right)} {a^2}$
But, if the length of the sides of the pentagon are different, then using geometry we can divide the pentagon into three triangles and then find the length of the sides of those three triangles and use Heron’s formula to find the area of each triangle and then add their areas to get the area of the pentagon.
Recently Updated Pages
Master Class 8 Social Science: Engaging Questions & Answers for Success

Master Class 8 English: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Master Class 8 Maths: Engaging Questions & Answers for Success

Master Class 8 Science: Engaging Questions & Answers for Success

Master Class 7 English: Engaging Questions & Answers for Success

Trending doubts
Difference Between Plant Cell and Animal Cell

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Who is eligible for RTE class 9 social science CBSE

Which places in India experience sunrise first and class 9 social science CBSE

What is pollution? How many types of pollution? Define it

Name 10 Living and Non living things class 9 biology CBSE

