
If the points A (k + 1, 2k), B (3k, 2k + 3), and C (5k - 1, 5k) are collinear then find the value of k.
Answer
515.4k+ views
Hint: As given in the question that the given points are collinear. So, for collinear points we know that the area of the triangle formed by them is zero. By applying the area of the triangle of coordinate geometry we get the value of k.
Complete step-by-step answer:
A ($x_1$, $y_1$), B ($x_2$, $y_2$) and C ($x_3$, $y_3$) are all three vertices of the triangle ABC.
Now, the area of triangle formula used when coordinates are given:
Area of $\Delta ABC$ $=\dfrac{1}{2}\left[ {{x}_{1}}\left( {{y}_{2}}-{{y}_{3}} \right)+{{x}_{2}}\left( {{y}_{3}}-{{y}_{1}} \right)+{{x}_{3}}\left( {{y}_{1}}-{{y}_{2}} \right) \right]$
Given: A (k + 1, 2k), B (3k, 2k + 3), and C (5k - 1, 5k) are the collinear points. So, the area of the triangle formed by them is zero.
Area of triangle $=\dfrac{1}{2}\left[ {{x}_{1}}\left( {{y}_{2}}-{{y}_{3}} \right)+{{x}_{2}}\left( {{y}_{3}}-{{y}_{1}} \right)+{{x}_{3}}\left( {{y}_{1}}-{{y}_{2}} \right) \right]$
As we know that if the points are collinear, then the area of the triangle is zero. On putting the values of coordinates, we get
$\begin{align}
& \Rightarrow 0=\dfrac{1}{2}\left[ \left( k+1 \right)\left( 2k+3-5k \right)+3k\left( 5k-2k \right)+\left( 5k-1 \right)\left( 2k-2k-3 \right) \right] \\
& \Rightarrow 0=\left( k+1 \right)\left( 3-3k \right)+3k\left( 3k \right)+\left( 5k-1 \right)\left( -3 \right) \\
& \Rightarrow 0=3k-3{{k}^{2}}+3-3k+9{{k}^{2}}-15k+3 \\
& \Rightarrow 0=6{{k}^{2}}-15k+6 \\
\end{align}$
Taking 3 common from right hand side, we have:
$\Rightarrow 0=3\left( 2{{k}^{2}}-5k+2 \right)$
Shifting 3 in left hand side from right hand side, the term will become zero,
$\Rightarrow 0=2{{k}^{2}}-5k+2$
Factorisation using middle term splitting of the above equation, we get
$\begin{align}
& \Rightarrow 0=2{{k}^{2}}-4k-k+2 \\
& \Rightarrow 0=2k\left( k-2 \right)-1\left( k-2 \right) \\
& \Rightarrow 0=\left( 2k-1 \right)\left( k-2 \right) \\
\end{align}$
So, one of them may be zero or both will be zero. Using this we get all the values of k.
$\begin{align}
& \Rightarrow 2k-1=0\text{ or }k-2=0 \\
& \Rightarrow k=\dfrac{1}{2}\text{ or }k=2 \\
\end{align}$
Hence, the values of k are $\dfrac{1}{2},2$.
Note: This problem can be alternatively solved by using the section formula which can be stated as: $\left( x,y \right)=\left( \dfrac{m{{x}_{1}}+{{x}_{2}}}{m+1},\dfrac{m{{y}_{1}}+1{{y}_{2}}}{m+1} \right)\text{ in ratio 1}:m$. Now, let B divide A and C in the ratio 1: m. By putting the values in the above formula, we obtain two equations corresponding to x and y coordinates. So, the values of K and m are evaluated.
Complete step-by-step answer:
A ($x_1$, $y_1$), B ($x_2$, $y_2$) and C ($x_3$, $y_3$) are all three vertices of the triangle ABC.
Now, the area of triangle formula used when coordinates are given:
Area of $\Delta ABC$ $=\dfrac{1}{2}\left[ {{x}_{1}}\left( {{y}_{2}}-{{y}_{3}} \right)+{{x}_{2}}\left( {{y}_{3}}-{{y}_{1}} \right)+{{x}_{3}}\left( {{y}_{1}}-{{y}_{2}} \right) \right]$
Given: A (k + 1, 2k), B (3k, 2k + 3), and C (5k - 1, 5k) are the collinear points. So, the area of the triangle formed by them is zero.
Area of triangle $=\dfrac{1}{2}\left[ {{x}_{1}}\left( {{y}_{2}}-{{y}_{3}} \right)+{{x}_{2}}\left( {{y}_{3}}-{{y}_{1}} \right)+{{x}_{3}}\left( {{y}_{1}}-{{y}_{2}} \right) \right]$
As we know that if the points are collinear, then the area of the triangle is zero. On putting the values of coordinates, we get
$\begin{align}
& \Rightarrow 0=\dfrac{1}{2}\left[ \left( k+1 \right)\left( 2k+3-5k \right)+3k\left( 5k-2k \right)+\left( 5k-1 \right)\left( 2k-2k-3 \right) \right] \\
& \Rightarrow 0=\left( k+1 \right)\left( 3-3k \right)+3k\left( 3k \right)+\left( 5k-1 \right)\left( -3 \right) \\
& \Rightarrow 0=3k-3{{k}^{2}}+3-3k+9{{k}^{2}}-15k+3 \\
& \Rightarrow 0=6{{k}^{2}}-15k+6 \\
\end{align}$
Taking 3 common from right hand side, we have:
$\Rightarrow 0=3\left( 2{{k}^{2}}-5k+2 \right)$
Shifting 3 in left hand side from right hand side, the term will become zero,
$\Rightarrow 0=2{{k}^{2}}-5k+2$
Factorisation using middle term splitting of the above equation, we get
$\begin{align}
& \Rightarrow 0=2{{k}^{2}}-4k-k+2 \\
& \Rightarrow 0=2k\left( k-2 \right)-1\left( k-2 \right) \\
& \Rightarrow 0=\left( 2k-1 \right)\left( k-2 \right) \\
\end{align}$
So, one of them may be zero or both will be zero. Using this we get all the values of k.
$\begin{align}
& \Rightarrow 2k-1=0\text{ or }k-2=0 \\
& \Rightarrow k=\dfrac{1}{2}\text{ or }k=2 \\
\end{align}$
Hence, the values of k are $\dfrac{1}{2},2$.
Note: This problem can be alternatively solved by using the section formula which can be stated as: $\left( x,y \right)=\left( \dfrac{m{{x}_{1}}+{{x}_{2}}}{m+1},\dfrac{m{{y}_{1}}+1{{y}_{2}}}{m+1} \right)\text{ in ratio 1}:m$. Now, let B divide A and C in the ratio 1: m. By putting the values in the above formula, we obtain two equations corresponding to x and y coordinates. So, the values of K and m are evaluated.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Trending doubts
State and prove Bernoullis theorem class 11 physics CBSE

Raindrops are spherical because of A Gravitational class 11 physics CBSE

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

Write the differences between monocot plants and dicot class 11 biology CBSE

Why is steel more elastic than rubber class 11 physics CBSE

Explain why a There is no atmosphere on the moon b class 11 physics CBSE
