
If the point (x, y) is equidistant from the points (a+b, b-a) and (a-b, a+b), then prove that bx = ay.
Answer
597.9k+ views
Hint: The distance between any two points \[\left( {{x}_{1}},{{y}_{1}} \right)\]and \[\left( {{x}_{2}},{{y}_{2}} \right)\]is given as \[\sqrt{{{\left( {{x}_{2}}-{{x}_{1}} \right)}^{2}}+{{\left( {{y}_{2}}-{{y}_{1}} \right)}^{2}}}\]. Apply this formula for finding the distances between (x, y) and (a+b, b-a), c accordingly and equate them as they are equidistant.
Complete step-by-step answer:
Given that the point (x, y) is equidistant from the points (a+b, b-a) and (a-b, a+b)..
Now, let us find the distance between the point (x, y) and (a+b, b-a).
The distance is given as:
\[\sqrt{{{\left( a+b-x \right)}^{2}}+{{\left( b-a-y \right)}^{2}}}\]
(Since the distance between any two points \[\left( {{x}_{1}},{{y}_{1}} \right)\]and \[\left( {{x}_{2}},{{y}_{2}} \right)\]is computed using the formula\[\sqrt{{{\left( {{x}_{2}}-{{x}_{1}} \right)}^{2}}+{{\left( {{y}_{2}}-{{y}_{1}} \right)}^{2}}}\])
Opening the bracket, we get
\[=\sqrt{{{a}^{2}}+{{b}^{2}}+{{x}^{2}}-2ax-2ab+2bx+{{a}^{2}}+{{b}^{2}}+{{y}^{2}}-2ay+2ab-2by}\]
Cancelling the like terms, we get
\[=\sqrt{2{{a}^{2}}+2{{b}^{2}}+{{x}^{2}}+{{y}^{2}}-2ax+2bx-2ay-2by}.............(1)\]
Now let us find the distance between the points (x, y) and (a+b, b-a).
Let us employ the same distance formula that is used in the earlier case,
The distance is given as:
\[\sqrt{{{\left( a-b-x \right)}^{2}}+{{\left( a+b-y \right)}^{2}}}\]
Opening the bracket, we get
\[=\sqrt{{{a}^{2}}+{{b}^{2}}+{{x}^{2}}-2ax+2ab-2bx+{{a}^{2}}+{{b}^{2}}+{{y}^{2}}+2ay-2ab-2by}\]
Cancelling the like terms, we get
\[=\sqrt{2{{a}^{2}}+2{{b}^{2}}+{{x}^{2}}+{{y}^{2}}-2ax-2bx+2ay-2by}.............(2)\]
Since it was mentioned in the given question that they are equidistant, let us equate the distances.
So, equating the equations (1) and (2), we get
\[\sqrt{2{{a}^{2}}+2{{b}^{2}}+{{x}^{2}}+{{y}^{2}}-2ax+2bx-2ay-2by}=\sqrt{2{{a}^{2}}+2{{b}^{2}}+{{x}^{2}}+{{y}^{2}}-2ax-2bx+2ay-2by}\]
Now, let us do squaring on both sides, we get
\[2{{a}^{2}}+2{{b}^{2}}+{{x}^{2}}+{{y}^{2}}-2ax+2bx-2ay-2by=2{{a}^{2}}+2{{b}^{2}}+{{x}^{2}}+{{y}^{2}}-2ax-2bx+2ay-2by\]
Up on cancelling the like terms, we have:
\[4bx=4ay\]
Dividing throughout by ‘4’, we get
\[\Rightarrow bx=ay\].
Therefore, we have proved that \[bx=ay\]when the point \[\left( x,y \right)\]is equidistant from the points \[\left( a+b,b-a \right)\] and \[\left( a-b,a+b \right)\].
Note: Finding out the locus means nothing but figuring out the relation between ‘x’ and ’y’ coordinates. You must consider a variable point and impose the given condition to find any locus. You must be attentive while expanding the square in this question, as it has some negative coefficients.
Complete step-by-step answer:
Given that the point (x, y) is equidistant from the points (a+b, b-a) and (a-b, a+b)..
Now, let us find the distance between the point (x, y) and (a+b, b-a).
The distance is given as:
\[\sqrt{{{\left( a+b-x \right)}^{2}}+{{\left( b-a-y \right)}^{2}}}\]
(Since the distance between any two points \[\left( {{x}_{1}},{{y}_{1}} \right)\]and \[\left( {{x}_{2}},{{y}_{2}} \right)\]is computed using the formula\[\sqrt{{{\left( {{x}_{2}}-{{x}_{1}} \right)}^{2}}+{{\left( {{y}_{2}}-{{y}_{1}} \right)}^{2}}}\])
Opening the bracket, we get
\[=\sqrt{{{a}^{2}}+{{b}^{2}}+{{x}^{2}}-2ax-2ab+2bx+{{a}^{2}}+{{b}^{2}}+{{y}^{2}}-2ay+2ab-2by}\]
Cancelling the like terms, we get
\[=\sqrt{2{{a}^{2}}+2{{b}^{2}}+{{x}^{2}}+{{y}^{2}}-2ax+2bx-2ay-2by}.............(1)\]
Now let us find the distance between the points (x, y) and (a+b, b-a).
Let us employ the same distance formula that is used in the earlier case,
The distance is given as:
\[\sqrt{{{\left( a-b-x \right)}^{2}}+{{\left( a+b-y \right)}^{2}}}\]
Opening the bracket, we get
\[=\sqrt{{{a}^{2}}+{{b}^{2}}+{{x}^{2}}-2ax+2ab-2bx+{{a}^{2}}+{{b}^{2}}+{{y}^{2}}+2ay-2ab-2by}\]
Cancelling the like terms, we get
\[=\sqrt{2{{a}^{2}}+2{{b}^{2}}+{{x}^{2}}+{{y}^{2}}-2ax-2bx+2ay-2by}.............(2)\]
Since it was mentioned in the given question that they are equidistant, let us equate the distances.
So, equating the equations (1) and (2), we get
\[\sqrt{2{{a}^{2}}+2{{b}^{2}}+{{x}^{2}}+{{y}^{2}}-2ax+2bx-2ay-2by}=\sqrt{2{{a}^{2}}+2{{b}^{2}}+{{x}^{2}}+{{y}^{2}}-2ax-2bx+2ay-2by}\]
Now, let us do squaring on both sides, we get
\[2{{a}^{2}}+2{{b}^{2}}+{{x}^{2}}+{{y}^{2}}-2ax+2bx-2ay-2by=2{{a}^{2}}+2{{b}^{2}}+{{x}^{2}}+{{y}^{2}}-2ax-2bx+2ay-2by\]
Up on cancelling the like terms, we have:
\[4bx=4ay\]
Dividing throughout by ‘4’, we get
\[\Rightarrow bx=ay\].
Therefore, we have proved that \[bx=ay\]when the point \[\left( x,y \right)\]is equidistant from the points \[\left( a+b,b-a \right)\] and \[\left( a-b,a+b \right)\].
Note: Finding out the locus means nothing but figuring out the relation between ‘x’ and ’y’ coordinates. You must consider a variable point and impose the given condition to find any locus. You must be attentive while expanding the square in this question, as it has some negative coefficients.
Recently Updated Pages
Master Class 8 Maths: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Master Class 7 Maths: Engaging Questions & Answers for Success

Class 7 Question and Answer - Your Ultimate Solutions Guide

Master Class 6 Maths: Engaging Questions & Answers for Success

Class 6 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
Write a letter to the principal requesting him to grant class 10 english CBSE

Why is there a time difference of about 5 hours between class 10 social science CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Discuss the main reasons for poverty in India

10 examples of evaporation in daily life with explanations

