
If the multiplication of matrices $\left( \begin{matrix}
2 & 3 \\
5 & 7 \\
\end{matrix} \right).\left( \begin{matrix}
1 & -3 \\
-2 & 4 \\
\end{matrix} \right)$ gives a matrix $\left( \begin{matrix}
-4 & 6 \\
-9 & x \\
\end{matrix} \right)$, then find the value of x?
Answer
510.6k+ views
Hint: We recall the procedure of multiplication of matrices before starting to solve the problem. We multiply the given matrices $\left( \begin{matrix}
2 & 3 \\
5 & 7 \\
\end{matrix} \right).\left( \begin{matrix}
1 & -3 \\
-2 & 4 \\
\end{matrix} \right)$ to proceed through the problem. Once, we find the multiplication of matrices we equate the resultant matrix with $\left( \begin{matrix}
-4 & 6 \\
-9 & x \\
\end{matrix} \right)$ by using the equality of matrices theorem to get the required value of ‘x’.
Complete step by step answer:
Given that we have a multiplication of two matrices $\left( \begin{matrix}
2 & 3 \\
5 & 7 \\
\end{matrix} \right).\left( \begin{matrix}
1 & -3 \\
-2 & 4 \\
\end{matrix} \right)$ which gives the resultant matrix $\left( \begin{matrix}
-4 & 6 \\
-9 & x \\
\end{matrix} \right)$. We need to find the value of ‘x’ that was present in the resultant matrix.
We have got the value of $\left( \begin{matrix}
2 & 3 \\
5 & 7 \\
\end{matrix} \right).\left( \begin{matrix}
1 & -3 \\
-2 & 4 \\
\end{matrix} \right)=\left( \begin{matrix}
-4 & 6 \\
-9 & x \\
\end{matrix} \right)$ ---(1).
We know that multiplication of two matrices $\left( \begin{matrix}
a & b \\
c & d \\
\end{matrix} \right)$, $\left( \begin{matrix}
p & q \\
r & s \\
\end{matrix} \right)$ is defined as $\left( \begin{matrix}
a & b \\
c & d \\
\end{matrix} \right)\times \left( \begin{matrix}
p & q \\
r & s \\
\end{matrix} \right)=\left( \begin{matrix}
\left( a\times p \right)+\left( b\times r \right) & \left( a\times q \right)+\left( b\times s \right) \\
\left( c\times p \right)+\left( d\times r \right) & \left( c\times q \right)+\left( d\times s \right) \\
\end{matrix} \right)$. We use this multiplication rule in the equation (1).
We have got the value of $\left( \begin{matrix}
\left( 2\times 1 \right)+\left( 3\times -2 \right) & \left( 2\times -3 \right)+\left( 3\times 4 \right) \\
\left( 5\times 1 \right)+\left( 7\times -2 \right) & \left( 5\times -3 \right)+\left( 7\times 4 \right) \\
\end{matrix} \right)=\left( \begin{matrix}
-4 & 6 \\
-9 & x \\
\end{matrix} \right)$.
We have got the value of $\left( \begin{matrix}
2-6 & -6+12 \\
5-14 & -15+28 \\
\end{matrix} \right)=\left( \begin{matrix}
-4 & 6 \\
-9 & x \\
\end{matrix} \right)$.
We have got the value of $\left( \begin{matrix}
-4 & 6 \\
-9 & 13 \\
\end{matrix} \right)=\left( \begin{matrix}
-4 & 6 \\
-9 & x \\
\end{matrix} \right)$ ---(2).
We know that according to the equality of the matrices if two matrices are said to be equal then each and every corresponding element in the two matrices are equal. i.e., if two matrices $\left( \begin{matrix}
a & b \\
c & d \\
\end{matrix} \right)$, $\left( \begin{matrix}
p & q \\
r & s \\
\end{matrix} \right)$ are said to be equal, then a = p, b = q, c = r and d = s. We use this result in equation (2).
So, we need to find the value of ‘x’ and we can see that all other elements are equal in both matrices.
So, we have got the value of x = 13.
We have found the value of x as 13.
∴ The value of x is 13.
Note: We should not make multiplication in matrices like we do addition and subtraction in matrices. We should not equate elements that are correspondingly the same on both matrices that we are equating. Similarly, we can expect problems that involve addition, subtraction in place of multiplication.
2 & 3 \\
5 & 7 \\
\end{matrix} \right).\left( \begin{matrix}
1 & -3 \\
-2 & 4 \\
\end{matrix} \right)$ to proceed through the problem. Once, we find the multiplication of matrices we equate the resultant matrix with $\left( \begin{matrix}
-4 & 6 \\
-9 & x \\
\end{matrix} \right)$ by using the equality of matrices theorem to get the required value of ‘x’.
Complete step by step answer:
Given that we have a multiplication of two matrices $\left( \begin{matrix}
2 & 3 \\
5 & 7 \\
\end{matrix} \right).\left( \begin{matrix}
1 & -3 \\
-2 & 4 \\
\end{matrix} \right)$ which gives the resultant matrix $\left( \begin{matrix}
-4 & 6 \\
-9 & x \\
\end{matrix} \right)$. We need to find the value of ‘x’ that was present in the resultant matrix.
We have got the value of $\left( \begin{matrix}
2 & 3 \\
5 & 7 \\
\end{matrix} \right).\left( \begin{matrix}
1 & -3 \\
-2 & 4 \\
\end{matrix} \right)=\left( \begin{matrix}
-4 & 6 \\
-9 & x \\
\end{matrix} \right)$ ---(1).
We know that multiplication of two matrices $\left( \begin{matrix}
a & b \\
c & d \\
\end{matrix} \right)$, $\left( \begin{matrix}
p & q \\
r & s \\
\end{matrix} \right)$ is defined as $\left( \begin{matrix}
a & b \\
c & d \\
\end{matrix} \right)\times \left( \begin{matrix}
p & q \\
r & s \\
\end{matrix} \right)=\left( \begin{matrix}
\left( a\times p \right)+\left( b\times r \right) & \left( a\times q \right)+\left( b\times s \right) \\
\left( c\times p \right)+\left( d\times r \right) & \left( c\times q \right)+\left( d\times s \right) \\
\end{matrix} \right)$. We use this multiplication rule in the equation (1).
We have got the value of $\left( \begin{matrix}
\left( 2\times 1 \right)+\left( 3\times -2 \right) & \left( 2\times -3 \right)+\left( 3\times 4 \right) \\
\left( 5\times 1 \right)+\left( 7\times -2 \right) & \left( 5\times -3 \right)+\left( 7\times 4 \right) \\
\end{matrix} \right)=\left( \begin{matrix}
-4 & 6 \\
-9 & x \\
\end{matrix} \right)$.
We have got the value of $\left( \begin{matrix}
2-6 & -6+12 \\
5-14 & -15+28 \\
\end{matrix} \right)=\left( \begin{matrix}
-4 & 6 \\
-9 & x \\
\end{matrix} \right)$.
We have got the value of $\left( \begin{matrix}
-4 & 6 \\
-9 & 13 \\
\end{matrix} \right)=\left( \begin{matrix}
-4 & 6 \\
-9 & x \\
\end{matrix} \right)$ ---(2).
We know that according to the equality of the matrices if two matrices are said to be equal then each and every corresponding element in the two matrices are equal. i.e., if two matrices $\left( \begin{matrix}
a & b \\
c & d \\
\end{matrix} \right)$, $\left( \begin{matrix}
p & q \\
r & s \\
\end{matrix} \right)$ are said to be equal, then a = p, b = q, c = r and d = s. We use this result in equation (2).
So, we need to find the value of ‘x’ and we can see that all other elements are equal in both matrices.
So, we have got the value of x = 13.
We have found the value of x as 13.
∴ The value of x is 13.
Note: We should not make multiplication in matrices like we do addition and subtraction in matrices. We should not equate elements that are correspondingly the same on both matrices that we are equating. Similarly, we can expect problems that involve addition, subtraction in place of multiplication.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Trending doubts
A deep narrow valley with steep sides formed as a result class 12 biology CBSE

a Tabulate the differences in the characteristics of class 12 chemistry CBSE

Why is the cell called the structural and functional class 12 biology CBSE

Which are the Top 10 Largest Countries of the World?

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Derive an expression for electric potential at point class 12 physics CBSE
