
If the median AD of a triangle ABC divided the angle $\angle BAC$ in the ratio $1:2$, then $\dfrac{{\operatorname{Sin} B}}{{\operatorname{Sin} C}}$is equal to
A.$2\cos \dfrac{A}{3}$
B.$\dfrac{1}{2}\sec \dfrac{A}{3}$
C.$\dfrac{1}{2}\sin \dfrac{A}{3}$
D.$2\operatorname{cosec} \dfrac{A}{3}$
Answer
483.3k+ views
Hint: In order to find the value of $\dfrac{{\operatorname{Sin} B}}{{\operatorname{Sin} C}}$, first find the angles $\angle BAD$ and $\angle DAC$ using the ratio of $1:2$ in which $\angle BAC$ was divided. Then using the sine rule of the triangle, find the value of Sin B and Sin C, divide them, solve using the properties of trigonometry and get the results.
Formula used:
$\sin 2x = 2\sin x\cos x$
$\dfrac{1}{{\cos x}} = \sec x$
Complete answer:
Considering a triangle to be ABC, with median AD and sides as a, b and c. The diagram according to that is:
Since, $\angle BAC$ divides the angle A into ratio $1:2$. According to the ratio, let the angle be x and 2x.
So, the equation becomes:
$x + 2x = \angle A$
$ \Rightarrow 3x = \angle A$
Dividing both sides by $3$:
$ \Rightarrow \dfrac{{3x}}{3} = \dfrac{{\angle A}}{3}$
$ \Rightarrow x = \dfrac{{\angle A}}{3}$
So, the angle becomes:
$\angle BAD = \dfrac{{\angle A}}{3}$
and
$\angle DAC = 2.\dfrac{{\angle A}}{3} = \dfrac{{2\angle A}}{3}$.
Now, the figure becomes:
In Triangle ABD:
Using Sine Rule, we can write it as:
$ \Rightarrow \dfrac{{AD}}{{BD}} = \dfrac{{\sin B}}{{\sin \dfrac{A}{3}}}$
Writing the above equation in form of Sin B, we get:
$ \Rightarrow \sin B = \dfrac{{AD}}{{BD}}\sin \dfrac{A}{3}$ …….(1)
Now, In Triangle ACD:
Using Sine Rule, we can write it as:
$ \Rightarrow \dfrac{{AD}}{{DC}} = \dfrac{{\sin C}}{{\sin \dfrac{{2A}}{3}}}$
Writing the above equation in form of Sin C, we get:
$ \Rightarrow \sin C = \dfrac{{AD}}{{DC}}\sin \dfrac{{2A}}{3}$ …….(2)
Since, we need to find the value of $\dfrac{{\operatorname{Sin} B}}{{\operatorname{Sin} C}}$, so dividing the equation 1 by equation 2 and, we get:
$ \Rightarrow \dfrac{{\sin B}}{{\sin C}} = \dfrac{{\dfrac{{AD}}{{BD}}\sin \dfrac{A}{3}}}{{\dfrac{{AD}}{{DC}}\sin \dfrac{{2A}}{3}}}$
Cancelling the common terms on the right side, we get:
$ \Rightarrow \dfrac{{\sin B}}{{\sin C}} = \dfrac{{DC\sin \dfrac{A}{3}}}{{BD\sin \dfrac{{2A}}{3}}}$
Since, AD is the median and median divides the line BC into two, equal parts. So, $BD = DC$.
That gives:
$ \Rightarrow \dfrac{{\sin B}}{{\sin C}} = \dfrac{{\sin \dfrac{A}{3}}}{{\sin \dfrac{{2A}}{3}}}$ ……(3)
From sub-angles, we know that:
$\sin 2x = 2\sin x\cos x$
So, we can write:
$\sin 2\dfrac{A}{3} = 2\sin \dfrac{A}{3}\cos \dfrac{A}{3}$
Substituting this equation in equation 3, we get:
$ \Rightarrow \dfrac{{\sin B}}{{\sin C}} = \dfrac{{\sin \dfrac{A}{3}}}{{2\sin \dfrac{A}{3}\cos \dfrac{A}{3}}}$
Cancelling the common terms:
$ \Rightarrow \dfrac{{\sin B}}{{\sin C}} = \dfrac{1}{{2\cos \dfrac{A}{3}}}$ ……(4)
Since, we know that $\dfrac{1}{{\cos x}} = \sec x$, so we can write $\dfrac{1}{{\cos \dfrac{A}{3}}} = \sec \dfrac{A}{3}$.
Substituting it in the above equation 4, we get:
$ \Rightarrow \dfrac{{\sin B}}{{\sin C}} = \dfrac{1}{2}\sec \dfrac{A}{3}$.
Hence, the value of $\dfrac{{\operatorname{Sin} B}}{{\operatorname{Sin} C}}$is equal to $\dfrac{1}{2}\sec \dfrac{A}{3}$.
Therefore, Option B is correct.
Note:
The Sine Rule of a triangle basically represents the relation between the sides of the triangle and the angles of the triangle that is just opposite of the side (not-right angled).
It’s important to draw a figure of the triangle, in order to have a clear view of the sides and the angles.
Formula used:
$\sin 2x = 2\sin x\cos x$
$\dfrac{1}{{\cos x}} = \sec x$
Complete answer:
Considering a triangle to be ABC, with median AD and sides as a, b and c. The diagram according to that is:
Since, $\angle BAC$ divides the angle A into ratio $1:2$. According to the ratio, let the angle be x and 2x.
So, the equation becomes:
$x + 2x = \angle A$
$ \Rightarrow 3x = \angle A$
Dividing both sides by $3$:
$ \Rightarrow \dfrac{{3x}}{3} = \dfrac{{\angle A}}{3}$
$ \Rightarrow x = \dfrac{{\angle A}}{3}$
So, the angle becomes:
$\angle BAD = \dfrac{{\angle A}}{3}$
and
$\angle DAC = 2.\dfrac{{\angle A}}{3} = \dfrac{{2\angle A}}{3}$.
Now, the figure becomes:
In Triangle ABD:
Using Sine Rule, we can write it as:
$ \Rightarrow \dfrac{{AD}}{{BD}} = \dfrac{{\sin B}}{{\sin \dfrac{A}{3}}}$
Writing the above equation in form of Sin B, we get:
$ \Rightarrow \sin B = \dfrac{{AD}}{{BD}}\sin \dfrac{A}{3}$ …….(1)
Now, In Triangle ACD:
Using Sine Rule, we can write it as:
$ \Rightarrow \dfrac{{AD}}{{DC}} = \dfrac{{\sin C}}{{\sin \dfrac{{2A}}{3}}}$
Writing the above equation in form of Sin C, we get:
$ \Rightarrow \sin C = \dfrac{{AD}}{{DC}}\sin \dfrac{{2A}}{3}$ …….(2)
Since, we need to find the value of $\dfrac{{\operatorname{Sin} B}}{{\operatorname{Sin} C}}$, so dividing the equation 1 by equation 2 and, we get:
$ \Rightarrow \dfrac{{\sin B}}{{\sin C}} = \dfrac{{\dfrac{{AD}}{{BD}}\sin \dfrac{A}{3}}}{{\dfrac{{AD}}{{DC}}\sin \dfrac{{2A}}{3}}}$
Cancelling the common terms on the right side, we get:
$ \Rightarrow \dfrac{{\sin B}}{{\sin C}} = \dfrac{{DC\sin \dfrac{A}{3}}}{{BD\sin \dfrac{{2A}}{3}}}$
Since, AD is the median and median divides the line BC into two, equal parts. So, $BD = DC$.
That gives:
$ \Rightarrow \dfrac{{\sin B}}{{\sin C}} = \dfrac{{\sin \dfrac{A}{3}}}{{\sin \dfrac{{2A}}{3}}}$ ……(3)
From sub-angles, we know that:
$\sin 2x = 2\sin x\cos x$
So, we can write:
$\sin 2\dfrac{A}{3} = 2\sin \dfrac{A}{3}\cos \dfrac{A}{3}$
Substituting this equation in equation 3, we get:
$ \Rightarrow \dfrac{{\sin B}}{{\sin C}} = \dfrac{{\sin \dfrac{A}{3}}}{{2\sin \dfrac{A}{3}\cos \dfrac{A}{3}}}$
Cancelling the common terms:
$ \Rightarrow \dfrac{{\sin B}}{{\sin C}} = \dfrac{1}{{2\cos \dfrac{A}{3}}}$ ……(4)
Since, we know that $\dfrac{1}{{\cos x}} = \sec x$, so we can write $\dfrac{1}{{\cos \dfrac{A}{3}}} = \sec \dfrac{A}{3}$.
Substituting it in the above equation 4, we get:
$ \Rightarrow \dfrac{{\sin B}}{{\sin C}} = \dfrac{1}{2}\sec \dfrac{A}{3}$.
Hence, the value of $\dfrac{{\operatorname{Sin} B}}{{\operatorname{Sin} C}}$is equal to $\dfrac{1}{2}\sec \dfrac{A}{3}$.
Therefore, Option B is correct.
Note:
The Sine Rule of a triangle basically represents the relation between the sides of the triangle and the angles of the triangle that is just opposite of the side (not-right angled).
It’s important to draw a figure of the triangle, in order to have a clear view of the sides and the angles.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

