
If the matrix B given as $B=\left[ \begin{matrix}
5 & 2\alpha & 1 \\
0 & 2 & 1 \\
\alpha & 3 & -1 \\
\end{matrix} \right]$ is the inverse of a $3\times 3$ matrix A, then the sum of all values of $\alpha $ for which $\det \left( A \right)+1=0$, is?
$\begin{align}
& \left( A \right)0 \\
& \left( B \right)2 \\
& \left( C \right)1 \\
& \left( D \right)-1 \\
\end{align}$
Answer
590.4k+ views
Hint: We solve this problem finding the relation between the determinant of A and determinant of B using the formula $\left| AB \right|=\left| A \right|\left| B \right|$. Then we find the determinant of B and substitute in the relation obtained to find the determinant of A. Then we substitute the determinant of A value in $\det \left( A \right)+1=0$ and find the values of $\alpha $ and then we find the sum of those values.
Complete step-by-step answer:
Two matrices A and B are said to be inverse of each other, if $AB=BA=I$
We are given that matrix B is $B=\left[ \begin{matrix}
5 & 2\alpha & 1 \\
0 & 2 & 1 \\
\alpha & 3 & -1 \\
\end{matrix} \right]$ and it is inverse of matrix A.
As, A and B are inverses of each other we can write it as,
$\Rightarrow AB=I...........\left( 1 \right)$
Let us consider the property of determinants. Determinant of product of matrices is equal to the product of determinant of matrices.
$\left| AB \right|=\left| A \right|\left| B \right|$
Now let us apply determinant to the above equation (1). Then we get,
$\begin{align}
& \Rightarrow \left| AB \right|=\left| I \right| \\
& \Rightarrow \left| A \right|\left| B \right|=1 \\
& \Rightarrow \left| A \right|=\dfrac{1}{\left| B \right|} \\
\end{align}$
So, we get that $\det \left( A \right)=\dfrac{1}{\det \left( B \right)}$.
Now, let us find the determinant of matrix B.
\[\begin{align}
& \left| B \right|=\left| \begin{matrix}
5 & 2\alpha & 1 \\
0 & 2 & 1 \\
\alpha & 3 & -1 \\
\end{matrix} \right| \\
& \left| B \right|=5\left| \begin{matrix}
2 & 1 \\
3 & -1 \\
\end{matrix} \right|-2\alpha \left| \begin{matrix}
0 & 1 \\
\alpha & -1 \\
\end{matrix} \right|+\left| \begin{matrix}
0 & 2 \\
\alpha & 3 \\
\end{matrix} \right| \\
& \left| B \right|=5\left( -2-3 \right)-2\alpha \left( 0-\alpha \right)+\left( 0-2\alpha \right) \\
& \left| B \right|=5\left( -5 \right)-2\alpha \left( -\alpha \right)+\left( -2\alpha \right) \\
& \left| B \right|=-25+2{{\alpha }^{2}}-2\alpha \\
\end{align}\]
As $\det \left( A \right)=\dfrac{1}{\det \left( B \right)}$, let us now calculate the value of determinant of A. Then we get
$\det \left( A \right)=\dfrac{1}{\det \left( B \right)}=\dfrac{1}{2{{\alpha }^{2}}-2\alpha -25}$
Now let us consider $\det \left( A \right)+1=0$.
$\begin{align}
& \Rightarrow \dfrac{1}{2{{\alpha }^{2}}-2\alpha -25}+1=0 \\
& \Rightarrow \dfrac{1+2{{\alpha }^{2}}-2\alpha -25}{2{{\alpha }^{2}}-2\alpha -25}=0 \\
& \Rightarrow 2{{\alpha }^{2}}-2\alpha -24=0 \\
& \Rightarrow 2\left( {{\alpha }^{2}}-\alpha -12 \right)=0 \\
& \Rightarrow {{\alpha }^{2}}-\alpha -12=0 \\
& \Rightarrow \left( \alpha -4 \right)\left( \alpha +3 \right)=0 \\
& \Rightarrow \alpha =4,-3 \\
\end{align}$
So, the possible values of $\alpha $ for which $\det \left( A \right)+1=0$ are -3 and 4.
So, sum of the possible values of $\alpha $ for which $\det \left( A \right)+1=0$ is
$\Rightarrow 4+\left( -3 \right)=1$
Hence the answer is 1.
Therefore, the answer is Option C.
Note:There is a possibility of making a mistake while solving this problem by taking the determinant of matrix A equal to the determinant of matrix B when they are inverse to each other. After obtaining the quadratic equation, we can also use the quadratic formula to find the possible values of $\alpha $ .
Complete step-by-step answer:
Two matrices A and B are said to be inverse of each other, if $AB=BA=I$
We are given that matrix B is $B=\left[ \begin{matrix}
5 & 2\alpha & 1 \\
0 & 2 & 1 \\
\alpha & 3 & -1 \\
\end{matrix} \right]$ and it is inverse of matrix A.
As, A and B are inverses of each other we can write it as,
$\Rightarrow AB=I...........\left( 1 \right)$
Let us consider the property of determinants. Determinant of product of matrices is equal to the product of determinant of matrices.
$\left| AB \right|=\left| A \right|\left| B \right|$
Now let us apply determinant to the above equation (1). Then we get,
$\begin{align}
& \Rightarrow \left| AB \right|=\left| I \right| \\
& \Rightarrow \left| A \right|\left| B \right|=1 \\
& \Rightarrow \left| A \right|=\dfrac{1}{\left| B \right|} \\
\end{align}$
So, we get that $\det \left( A \right)=\dfrac{1}{\det \left( B \right)}$.
Now, let us find the determinant of matrix B.
\[\begin{align}
& \left| B \right|=\left| \begin{matrix}
5 & 2\alpha & 1 \\
0 & 2 & 1 \\
\alpha & 3 & -1 \\
\end{matrix} \right| \\
& \left| B \right|=5\left| \begin{matrix}
2 & 1 \\
3 & -1 \\
\end{matrix} \right|-2\alpha \left| \begin{matrix}
0 & 1 \\
\alpha & -1 \\
\end{matrix} \right|+\left| \begin{matrix}
0 & 2 \\
\alpha & 3 \\
\end{matrix} \right| \\
& \left| B \right|=5\left( -2-3 \right)-2\alpha \left( 0-\alpha \right)+\left( 0-2\alpha \right) \\
& \left| B \right|=5\left( -5 \right)-2\alpha \left( -\alpha \right)+\left( -2\alpha \right) \\
& \left| B \right|=-25+2{{\alpha }^{2}}-2\alpha \\
\end{align}\]
As $\det \left( A \right)=\dfrac{1}{\det \left( B \right)}$, let us now calculate the value of determinant of A. Then we get
$\det \left( A \right)=\dfrac{1}{\det \left( B \right)}=\dfrac{1}{2{{\alpha }^{2}}-2\alpha -25}$
Now let us consider $\det \left( A \right)+1=0$.
$\begin{align}
& \Rightarrow \dfrac{1}{2{{\alpha }^{2}}-2\alpha -25}+1=0 \\
& \Rightarrow \dfrac{1+2{{\alpha }^{2}}-2\alpha -25}{2{{\alpha }^{2}}-2\alpha -25}=0 \\
& \Rightarrow 2{{\alpha }^{2}}-2\alpha -24=0 \\
& \Rightarrow 2\left( {{\alpha }^{2}}-\alpha -12 \right)=0 \\
& \Rightarrow {{\alpha }^{2}}-\alpha -12=0 \\
& \Rightarrow \left( \alpha -4 \right)\left( \alpha +3 \right)=0 \\
& \Rightarrow \alpha =4,-3 \\
\end{align}$
So, the possible values of $\alpha $ for which $\det \left( A \right)+1=0$ are -3 and 4.
So, sum of the possible values of $\alpha $ for which $\det \left( A \right)+1=0$ is
$\Rightarrow 4+\left( -3 \right)=1$
Hence the answer is 1.
Therefore, the answer is Option C.
Note:There is a possibility of making a mistake while solving this problem by taking the determinant of matrix A equal to the determinant of matrix B when they are inverse to each other. After obtaining the quadratic equation, we can also use the quadratic formula to find the possible values of $\alpha $ .
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

The correct structure of ethylenediaminetetraacetic class 12 chemistry CBSE

Calculate the equivalent resistance between a and b class 12 physics CBSE

How many states of matter are there in total class 12 chemistry CBSE

Which of the following is the best conductor of electricity class 12 physics CBSE

