
If the lines
$ x{\sin ^2}A + y\sin A + 1 = 0 \\
x{\sin ^2}B + y\sin B + 1 = 0 \\
x{\sin ^2}C + y\sin C + 1 = 0 \\
$
Are concurrent where A, B, C are angles of triangle then $\Delta ABC$ must be-
A.Equilateral triangle
B.Isosceles Triangle
C.Right angle Triangle
D.No such triangle exists
Answer
588.6k+ views
Hint: The condition of concurrency which states that if three lines${a_1}{x_1} + {b_1}{y_1} + {c_1} = 0$ , ${a_2}{x_2} + {b_2}{y_2} + {c_2} = 0$ and ${a_3}{x_3} + {b_3}{y_3} + {c_3} = 0$ are concurrent then
$\left| {\begin{array}{*{20}{c}}
{{a_1}}&{{b_1}}&{{c_1}} \\
{{a_2}}&{{b_2}}&{{c_2}} \\
{{a_3}}&{{b_3}}&{{c_3}}
\end{array}} \right| = 0$ to solve the lines. If two angles are equal then it is an isosceles triangle, if three angles are equal then it is an equilateral triangle. If one angle equals ${90^ \circ }$ then it is a right angle triangle.If none of the above conditions exists then there is no such triangle.
Complete step-by-step answer:
Given that these lines are concurrent-
$ x{\sin ^2}A + y\sin A + 1 = 0 \\
x{\sin ^2}B + y\sin B + 1 = 0 \\
x{\sin ^2}C + y\sin C + 1 = 0 \\
$
We know that that Three lines${a_1}{x_1} + {b_1}{y_1} + {c_1} = 0$ , ${a_2}{x_2} + {b_2}{y_2} + {c_2} = 0$ and ${a_3}{x_3} + {b_3}{y_3} + {c_3} = 0$ are concurrent only if there determinant is equal to zero which is given as-
$\left| {\begin{array}{*{20}{c}}
{{a_1}}&{{b_1}}&{{c_1}} \\
{{a_2}}&{{b_2}}&{{c_2}} \\
{{a_3}}&{{b_3}}&{{c_3}}
\end{array}} \right| = 0$
On comparing the given lines and the lines of the condition of concurrency we get,
${a_1} = {\sin ^2}A$ ,${b_1} = \sin A$, ${c_1} = {c_2} = {c_3} = 1$, ${a_2} = {\sin ^2}B$ ,${b_2} = \sin B$ ,${a_3} = {\sin ^2}C$ and ${b_3} = \sin C$
On putting these values in the condition we get,
$ \Rightarrow \left| {\begin{array}{*{20}{c}}
{{{\sin }^2}A}&{\sin A}&1 \\
{{{\sin }^2}B}&{\sin B}&1 \\
{{{\sin }^2}C}&{\sin C}&1
\end{array}} \right| = 0$
On solving the determinant we get,
$ \Rightarrow {\sin ^2}A\left| {\begin{array}{*{20}{c}}
{\sin B}&1 \\
{\sin C}&1
\end{array}} \right| - \sin A\left| {\begin{array}{*{20}{c}}
{{{\sin }^2}B}&1 \\
{{{\sin }^2}C}&1
\end{array}} \right| + 1\left| {\begin{array}{*{20}{c}}
{{{\sin }^2}B}&{\sin B} \\
{{{\sin }^2}C}&{\sin C}
\end{array}} \right| = 0$
On solving further-
$ \Rightarrow {\sin ^2}A\left( {\sin B - \sin C} \right) - \sin A\left( {{{\sin }^2}B - {{\sin }^2}C} \right) + 1\left( {{{\sin }^2}B\sin C - {{\sin }^2}C\sin B} \right) = 0$
We know that,${a^2} - {b^2} = \left( {a + b} \right)\left( {a - b} \right)$
So using the identity and taking the common terms out of the bracket in the third term we get,
$ \Rightarrow {\sin ^2}A\left( {\sin B - \sin C} \right) - \sin A\left( {\sin B - \sin C} \right)\left( {\sin B + \sin C} \right) + \sin B\sin C\left( {\sin B - \sin C} \right) = 0$
On taking$\left( {\sin B - \sin C} \right)$ common we get,
$ \Rightarrow \left( {\sin B - \sin C} \right)\left[ {{{\sin }^2}A - \sin A\left( {\sin B + \sin C} \right) + \sin B\sin C} \right] = 0$
Now on solving the terms inside the bracket,
$ \Rightarrow \left( {\sin B - \sin C} \right)\left[ {{{\sin }^2}A - \sin A\sin B - \sin A\sin C + \sin B\sin C} \right] = 0$
On taking common we get,
$ \Rightarrow \left( {\sin B - \sin C} \right)\left[ {\sin A\left( {\sin A - \sin B} \right) - \sin C\left( {\sin A - \sin B} \right)} \right] = 0$
On taking$\left( {\sin A - \sin B} \right)$ common we get,
$ \Rightarrow \left( {\sin B - \sin C} \right)\left( {\sin A - \sin B} \right)\left[ {\sin A - \sin C} \right] = 0$
On equating the multiplication terms to zero we get,
$ \Rightarrow \left( {\sin B - \sin C} \right) = 0{\text{ or }}\left( {\sin A - \sin B} \right) = 0{\text{ or }}\left[ {\sin A - \sin C} \right] = 0$
So we get,
$ \Rightarrow \sin B = \sin C{\text{ or }}\sin A = \sin B{\text{ or }}\sin A = \sin C$
This means that any of the two angles of the triangles are equal
So the triangle is an isosceles triangle.
Hence, the correct answer is B.
Note: The condition of concurrency of three lines means that they pass through the same point. If instead of angles a quadratic equation was given with integer values then we could have solved the question by solving the first two lines and finding the value of x and y. Then we would have checked if these values satisfied the third line. If they did then the lines would be concurrent.
$\left| {\begin{array}{*{20}{c}}
{{a_1}}&{{b_1}}&{{c_1}} \\
{{a_2}}&{{b_2}}&{{c_2}} \\
{{a_3}}&{{b_3}}&{{c_3}}
\end{array}} \right| = 0$ to solve the lines. If two angles are equal then it is an isosceles triangle, if three angles are equal then it is an equilateral triangle. If one angle equals ${90^ \circ }$ then it is a right angle triangle.If none of the above conditions exists then there is no such triangle.
Complete step-by-step answer:
Given that these lines are concurrent-
$ x{\sin ^2}A + y\sin A + 1 = 0 \\
x{\sin ^2}B + y\sin B + 1 = 0 \\
x{\sin ^2}C + y\sin C + 1 = 0 \\
$
We know that that Three lines${a_1}{x_1} + {b_1}{y_1} + {c_1} = 0$ , ${a_2}{x_2} + {b_2}{y_2} + {c_2} = 0$ and ${a_3}{x_3} + {b_3}{y_3} + {c_3} = 0$ are concurrent only if there determinant is equal to zero which is given as-
$\left| {\begin{array}{*{20}{c}}
{{a_1}}&{{b_1}}&{{c_1}} \\
{{a_2}}&{{b_2}}&{{c_2}} \\
{{a_3}}&{{b_3}}&{{c_3}}
\end{array}} \right| = 0$
On comparing the given lines and the lines of the condition of concurrency we get,
${a_1} = {\sin ^2}A$ ,${b_1} = \sin A$, ${c_1} = {c_2} = {c_3} = 1$, ${a_2} = {\sin ^2}B$ ,${b_2} = \sin B$ ,${a_3} = {\sin ^2}C$ and ${b_3} = \sin C$
On putting these values in the condition we get,
$ \Rightarrow \left| {\begin{array}{*{20}{c}}
{{{\sin }^2}A}&{\sin A}&1 \\
{{{\sin }^2}B}&{\sin B}&1 \\
{{{\sin }^2}C}&{\sin C}&1
\end{array}} \right| = 0$
On solving the determinant we get,
$ \Rightarrow {\sin ^2}A\left| {\begin{array}{*{20}{c}}
{\sin B}&1 \\
{\sin C}&1
\end{array}} \right| - \sin A\left| {\begin{array}{*{20}{c}}
{{{\sin }^2}B}&1 \\
{{{\sin }^2}C}&1
\end{array}} \right| + 1\left| {\begin{array}{*{20}{c}}
{{{\sin }^2}B}&{\sin B} \\
{{{\sin }^2}C}&{\sin C}
\end{array}} \right| = 0$
On solving further-
$ \Rightarrow {\sin ^2}A\left( {\sin B - \sin C} \right) - \sin A\left( {{{\sin }^2}B - {{\sin }^2}C} \right) + 1\left( {{{\sin }^2}B\sin C - {{\sin }^2}C\sin B} \right) = 0$
We know that,${a^2} - {b^2} = \left( {a + b} \right)\left( {a - b} \right)$
So using the identity and taking the common terms out of the bracket in the third term we get,
$ \Rightarrow {\sin ^2}A\left( {\sin B - \sin C} \right) - \sin A\left( {\sin B - \sin C} \right)\left( {\sin B + \sin C} \right) + \sin B\sin C\left( {\sin B - \sin C} \right) = 0$
On taking$\left( {\sin B - \sin C} \right)$ common we get,
$ \Rightarrow \left( {\sin B - \sin C} \right)\left[ {{{\sin }^2}A - \sin A\left( {\sin B + \sin C} \right) + \sin B\sin C} \right] = 0$
Now on solving the terms inside the bracket,
$ \Rightarrow \left( {\sin B - \sin C} \right)\left[ {{{\sin }^2}A - \sin A\sin B - \sin A\sin C + \sin B\sin C} \right] = 0$
On taking common we get,
$ \Rightarrow \left( {\sin B - \sin C} \right)\left[ {\sin A\left( {\sin A - \sin B} \right) - \sin C\left( {\sin A - \sin B} \right)} \right] = 0$
On taking$\left( {\sin A - \sin B} \right)$ common we get,
$ \Rightarrow \left( {\sin B - \sin C} \right)\left( {\sin A - \sin B} \right)\left[ {\sin A - \sin C} \right] = 0$
On equating the multiplication terms to zero we get,
$ \Rightarrow \left( {\sin B - \sin C} \right) = 0{\text{ or }}\left( {\sin A - \sin B} \right) = 0{\text{ or }}\left[ {\sin A - \sin C} \right] = 0$
So we get,
$ \Rightarrow \sin B = \sin C{\text{ or }}\sin A = \sin B{\text{ or }}\sin A = \sin C$
This means that any of the two angles of the triangles are equal
So the triangle is an isosceles triangle.
Hence, the correct answer is B.
Note: The condition of concurrency of three lines means that they pass through the same point. If instead of angles a quadratic equation was given with integer values then we could have solved the question by solving the first two lines and finding the value of x and y. Then we would have checked if these values satisfied the third line. If they did then the lines would be concurrent.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

