
If the line $ax+by+c=0,ab\ne 0$, is a tangent to the curve $xy=1-2x$, then
A. $a>0,b<0$
B. $a>0,b>0$
C. $a<0,b>0$
D. $a<0,b<0$
Answer
612k+ views
Hint: We will be using the concept of differential calculus to find the slope of tangent and then we will be using point and slope form of line to write the equation of tangent after this we will compare the equation with the given one to find the answer.
Complete step-by-step solution -
Now, we have been given that $ax+by+c=0,ab\ne 0$ is a tangent to the curve $xy=1-2x$.
Now, we know that tangent to a curve at any point is given by \[\dfrac{dy}{dx}\ or\ f'\left( x \right)\]. So, we differentiate $xy=1-2x$ with respect to x.
$\begin{align}
\Rightarrow & x\dfrac{dy}{dx}+y=-2 \\
\Rightarrow & x\dfrac{dy}{dx}=-2-y \\
\Rightarrow & \dfrac{dy}{dx}=\dfrac{-2-y}{x}..........\left( 1 \right) \\
\end{align}$
Now, let us suppose an arbitrary point $\left( {{x}_{1}},{{y}_{1}} \right)$ on the curve. Now we know that the line tangent through $\left( {{x}_{1}},{{y}_{1}} \right)$ is of the form,
$\left( y-{{y}_{1}} \right)=m\left( x-{{x}_{1}} \right)$
Where m is the slope of the line. So, from (1) we have,
$\begin{align}
& m=\dfrac{-2-{{y}_{1}}}{{{x}_{1}}} \\
\Rightarrow & \left( y-{{y}_{1}} \right)=\dfrac{-\left( 2+{{y}_{1}} \right)}{{{x}_{1}}}\left( x-{{x}_{1}} \right) \\
\end{align}$
Now, on cross multiply and simplifying, we have,
$\begin{align}
\Rightarrow & {{x}_{1}}y-{{x}_{1}}{{y}_{1}}=-2x+2{{x}_{1}}-x{{y}_{1}}+{{x}_{1}}{{y}_{1}} \\
\Rightarrow & {{x}_{1}}y+x\left( 2+{{y}_{1}} \right)-2{{x}_{1}}{{y}_{1}}-2{{x}_{1}}=0.........\left( 2 \right) \\
\end{align}$
Now, since $\left( {{x}_{1}},{{y}_{1}} \right)$ lies on the curve. Therefore, we have it satisfy the equation ${{x}_{1}}{{y}_{1}}=1-2{{x}_{1}}$.
${{x}_{1}}\left( {{y}_{1}}+2 \right)=1$
Since, 1 > 0. So, we have,
${{x}_{1}}\left( {{y}_{1}}+2 \right)>0...........\left( 3 \right)$
Now, we will compare (2) with $ax+by+c=0$. So, we have,
$\begin{align}
\Rightarrow & ax+by+c=0 \\
\Rightarrow & \left( 2+{{y}_{1}} \right)x+{{x}_{1}}y-2{{x}_{1}}{{y}_{1}}-2{{x}_{1}}=0 \\
\end{align}$
So, on comparing we have,
$\begin{align}
\Rightarrow & a=\left( 2+{{y}_{1}} \right).......\left( 4 \right) \\
\Rightarrow & b={{x}_{1}}........\left( 5 \right) \\
\Rightarrow & c=-2{{x}_{1}}{{y}_{1}}-2{{x}_{1}} \\
\end{align}$
Now, from (3) we have,
${{x}_{1}}\left( {{y}_{1}}+2 \right)>0$
This is only possible if $\left( {{x}_{1}}>0\ and\ {{y}_{1}}+2>0 \right)\ or\ \left( {{x}_{1}}<0\ and\ {{y}_{1}}+2<0 \right)$.
So, we have from (4) and (5)
$\begin{align}
& a>0\ and\ b>0 \\
& a<0\ and\ b<0 \\
\end{align}$
So, the correct options are (B) and (D).
Note: To solve these types of questions it is important to remember the concepts of differential calculus and coordinate geometry. Also it is important to note that we have used the fact that if ab > 0 then either a > 0, b > 0 or a < 0, b < 0.
Complete step-by-step solution -
Now, we have been given that $ax+by+c=0,ab\ne 0$ is a tangent to the curve $xy=1-2x$.
Now, we know that tangent to a curve at any point is given by \[\dfrac{dy}{dx}\ or\ f'\left( x \right)\]. So, we differentiate $xy=1-2x$ with respect to x.
$\begin{align}
\Rightarrow & x\dfrac{dy}{dx}+y=-2 \\
\Rightarrow & x\dfrac{dy}{dx}=-2-y \\
\Rightarrow & \dfrac{dy}{dx}=\dfrac{-2-y}{x}..........\left( 1 \right) \\
\end{align}$
Now, let us suppose an arbitrary point $\left( {{x}_{1}},{{y}_{1}} \right)$ on the curve. Now we know that the line tangent through $\left( {{x}_{1}},{{y}_{1}} \right)$ is of the form,
$\left( y-{{y}_{1}} \right)=m\left( x-{{x}_{1}} \right)$
Where m is the slope of the line. So, from (1) we have,
$\begin{align}
& m=\dfrac{-2-{{y}_{1}}}{{{x}_{1}}} \\
\Rightarrow & \left( y-{{y}_{1}} \right)=\dfrac{-\left( 2+{{y}_{1}} \right)}{{{x}_{1}}}\left( x-{{x}_{1}} \right) \\
\end{align}$
Now, on cross multiply and simplifying, we have,
$\begin{align}
\Rightarrow & {{x}_{1}}y-{{x}_{1}}{{y}_{1}}=-2x+2{{x}_{1}}-x{{y}_{1}}+{{x}_{1}}{{y}_{1}} \\
\Rightarrow & {{x}_{1}}y+x\left( 2+{{y}_{1}} \right)-2{{x}_{1}}{{y}_{1}}-2{{x}_{1}}=0.........\left( 2 \right) \\
\end{align}$
Now, since $\left( {{x}_{1}},{{y}_{1}} \right)$ lies on the curve. Therefore, we have it satisfy the equation ${{x}_{1}}{{y}_{1}}=1-2{{x}_{1}}$.
${{x}_{1}}\left( {{y}_{1}}+2 \right)=1$
Since, 1 > 0. So, we have,
${{x}_{1}}\left( {{y}_{1}}+2 \right)>0...........\left( 3 \right)$
Now, we will compare (2) with $ax+by+c=0$. So, we have,
$\begin{align}
\Rightarrow & ax+by+c=0 \\
\Rightarrow & \left( 2+{{y}_{1}} \right)x+{{x}_{1}}y-2{{x}_{1}}{{y}_{1}}-2{{x}_{1}}=0 \\
\end{align}$
So, on comparing we have,
$\begin{align}
\Rightarrow & a=\left( 2+{{y}_{1}} \right).......\left( 4 \right) \\
\Rightarrow & b={{x}_{1}}........\left( 5 \right) \\
\Rightarrow & c=-2{{x}_{1}}{{y}_{1}}-2{{x}_{1}} \\
\end{align}$
Now, from (3) we have,
${{x}_{1}}\left( {{y}_{1}}+2 \right)>0$
This is only possible if $\left( {{x}_{1}}>0\ and\ {{y}_{1}}+2>0 \right)\ or\ \left( {{x}_{1}}<0\ and\ {{y}_{1}}+2<0 \right)$.
So, we have from (4) and (5)
$\begin{align}
& a>0\ and\ b>0 \\
& a<0\ and\ b<0 \\
\end{align}$
So, the correct options are (B) and (D).
Note: To solve these types of questions it is important to remember the concepts of differential calculus and coordinate geometry. Also it is important to note that we have used the fact that if ab > 0 then either a > 0, b > 0 or a < 0, b < 0.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

