
If the interest is payable quarterly, then find out after what time will Rs.1600 amount to 1852.20 at 20%.
A. 3 months \[\]
B. 6 months\[\]
C. 9 months\[\]
D. 1 year\[\]
Answer
576.9k+ views
Hint: Use the compound interest formula using the given data from the question. The compound interest is the concept where the interest is added into the principal and in the next compound period, the new principal is the sum of the old principal and accumulated interest.
Complete step-by-step solution:
We shall denote the principal as $P$, the compound period as $t$, the rate of interest as $r$, the number of compound periods as $n$, and the amount accumulated after the time period $nt$ as $A$. Then we know from the formula of compound interest,
\[A=P{{\left( 1+\dfrac{r}{n} \right)}^{nt}}\]
We find from the given data in the question that we have to calculate compound period $t$ where the principal$P=1600$, the rate of interest $r=5%=.05$, the number of compound periods $n=1$ quarter and finally the accumulated amount after time period $nt$, $A=1852.20$. Putting all these values in the compound interest formula
\[ 1852.20=P{{\left( 1+\dfrac{r}{n} \right)}^{nt}}=1600{{\left( 1+\dfrac{0.20}{4} \right)}^{4t}}\\
\Rightarrow 1852.20=1600{{\left( 1+.05 \right)}^{4t}} \\
\Rightarrow {{\left( 1.05 \right)}^{4t}}=\text{1}.\text{157625=}{{\left( 1.05 \right)}^{3}} \\
\Rightarrow t=\dfrac{3}{4} \]
So the time period is three-fourth of a year. So the time in months is $\dfrac{3}{4}\times 12=9$ months.
So the correct choice out of the given options is C. 9 months
Note: The question tests your knowledge of compound interest. We need to be careful of while substituting the required values in the formula. Similarly, we can also determine other unknowns in the compound interest formula if data is given sufficiently. Here we can use the alternative method
Taking logarithm both side of the compound interest formula,
\[\log A=\log \left[ P{{\left( 1+\dfrac{r}{n} \right)}^{nt}} \right]\]
Using logarithmic identities we expand above,
\[\log A=\log \left[ P{{\left( 1+\dfrac{r}{n} \right)}^{nt}} \right]=\log P+\log {{\left( 1+\dfrac{r}{n} \right)}^{nt}}=\log P+nt\log \left( 1+\dfrac{r}{n} \right)\]
We know that $\log 1=0$,
\[\log A=\log P+nt\log \dfrac{r}{n}\Rightarrow t=\dfrac{\log A-\log P}{n\log \dfrac{r}{n}}=\dfrac{\log \left( \dfrac{A}{P} \right)}{n\log \dfrac{r}{n}}\]
Putting necessary values,
\[t=\dfrac{\log \left( \dfrac{1852.20}{1600} \right)}{4\log \dfrac{.20}{4}}=0.75\]
So the time period is $0.75\times 12=9$ months.
Complete step-by-step solution:
We shall denote the principal as $P$, the compound period as $t$, the rate of interest as $r$, the number of compound periods as $n$, and the amount accumulated after the time period $nt$ as $A$. Then we know from the formula of compound interest,
\[A=P{{\left( 1+\dfrac{r}{n} \right)}^{nt}}\]
We find from the given data in the question that we have to calculate compound period $t$ where the principal$P=1600$, the rate of interest $r=5%=.05$, the number of compound periods $n=1$ quarter and finally the accumulated amount after time period $nt$, $A=1852.20$. Putting all these values in the compound interest formula
\[ 1852.20=P{{\left( 1+\dfrac{r}{n} \right)}^{nt}}=1600{{\left( 1+\dfrac{0.20}{4} \right)}^{4t}}\\
\Rightarrow 1852.20=1600{{\left( 1+.05 \right)}^{4t}} \\
\Rightarrow {{\left( 1.05 \right)}^{4t}}=\text{1}.\text{157625=}{{\left( 1.05 \right)}^{3}} \\
\Rightarrow t=\dfrac{3}{4} \]
So the time period is three-fourth of a year. So the time in months is $\dfrac{3}{4}\times 12=9$ months.
So the correct choice out of the given options is C. 9 months
Note: The question tests your knowledge of compound interest. We need to be careful of while substituting the required values in the formula. Similarly, we can also determine other unknowns in the compound interest formula if data is given sufficiently. Here we can use the alternative method
Taking logarithm both side of the compound interest formula,
\[\log A=\log \left[ P{{\left( 1+\dfrac{r}{n} \right)}^{nt}} \right]\]
Using logarithmic identities we expand above,
\[\log A=\log \left[ P{{\left( 1+\dfrac{r}{n} \right)}^{nt}} \right]=\log P+\log {{\left( 1+\dfrac{r}{n} \right)}^{nt}}=\log P+nt\log \left( 1+\dfrac{r}{n} \right)\]
We know that $\log 1=0$,
\[\log A=\log P+nt\log \dfrac{r}{n}\Rightarrow t=\dfrac{\log A-\log P}{n\log \dfrac{r}{n}}=\dfrac{\log \left( \dfrac{A}{P} \right)}{n\log \dfrac{r}{n}}\]
Putting necessary values,
\[t=\dfrac{\log \left( \dfrac{1852.20}{1600} \right)}{4\log \dfrac{.20}{4}}=0.75\]
So the time period is $0.75\times 12=9$ months.
Recently Updated Pages
Master Class 8 Social Science: Engaging Questions & Answers for Success

Master Class 8 Maths: Engaging Questions & Answers for Success

Master Class 8 Science: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Master Class 8 English: Engaging Questions & Answers for Success

Why are manures considered better than fertilizers class 11 biology CBSE

Trending doubts
What is BLO What is the full form of BLO class 8 social science CBSE

Citizens of India can vote at the age of A 18 years class 8 social science CBSE

Full form of STD, ISD and PCO

Right to vote is a AFundamental Right BFundamental class 8 social science CBSE

What is the difference between rai and mustard see class 8 biology CBSE

Summary of the poem Where the Mind is Without Fear class 8 english CBSE


