
If the integral is given as ${{I}_{m}}=\int\limits_{0}^{\dfrac{\pi }{4}}{{{\left( \tan x \right)}^{m}}dx}$, then ${{I}_{3}}+{{I}_{5}}+{{I}_{7}}+{{I}_{9}}$ is equal to
(A) $\dfrac{3}{8}$
(B) $\dfrac{3}{7}$
(C) $\dfrac{2}{5}$
(D) $\dfrac{4}{9}$
Answer
586.8k+ views
Hint: We solve this question by first writing ${{\left( \tan x \right)}^{m}}$ as ${{\left( \tan x \right)}^{m-2}}\times {{\left( \tan x \right)}^{2}}$ in the integral ${{I}_{m}}$. Then we use the formula ${{\sec }^{2}}x-{{\tan }^{2}}x=1$ and write ${{I}_{m}}$ in terms of ${{I}_{m-2}}$. Then we integrate the remaining term by assuming $\tan x=t$ and then converting the integral in terms of t and find the value of integral using the formula $\int{{{x}^{n}}dx}=\dfrac{{{x}^{n+1}}}{n+1}$. Then we get a relation between ${{I}_{m}}$ and ${{I}_{m-2}}$. Then we substitute the values m=5 and m=9 and then adding them we get the required value.
Complete step-by-step solution:
Let us consider the given integral, ${{I}_{m}}=\int\limits_{0}^{\dfrac{\pi }{4}}{{{\left( \tan x \right)}^{m}}dx}$
Let us consider the formula,
${{a}^{m+n}}={{a}^{m}}\times {{a}^{n}}$
Then we can write ${{\left( \tan x \right)}^{m}}$ as
$\begin{align}
& {{\left( \tan x \right)}^{m}}={{\left( \tan x \right)}^{m-2}}\times {{\left( \tan x \right)}^{2}} \\
& {{\left( \tan x \right)}^{m}}={{\left( \tan x \right)}^{m-2}}\times {{\tan }^{2}}x \\
\end{align}$
So, we can write the integral as,
${{I}_{m}}=\int\limits_{0}^{\dfrac{\pi }{4}}{\left( {{\left( \tan x \right)}^{m-2}}\times {{\tan }^{2}}x \right)dx}$
Now, let us consider the formula for trigonometric identity,
$\begin{align}
& \Rightarrow {{\sec }^{2}}x-{{\tan }^{2}}x=1 \\
& \Rightarrow {{\tan }^{2}}x={{\sec }^{2}}x-1 \\
\end{align}$
Using that we can write the integral as,
$\begin{align}
& \Rightarrow {{I}_{m}}=\int\limits_{0}^{\dfrac{\pi }{4}}{\left( {{\left( \tan x \right)}^{m-2}}\times \left( {{\sec }^{2}}x-1 \right) \right)dx} \\
& \Rightarrow {{I}_{m}}=\int\limits_{0}^{\dfrac{\pi }{4}}{\left( {{\left( \tan x \right)}^{m-2}}{{\sec }^{2}}x-{{\left( \tan x \right)}^{m-2}} \right)dx} \\
& \Rightarrow {{I}_{m}}=\int\limits_{0}^{\dfrac{\pi }{4}}{{{\left( \tan x \right)}^{m-2}}{{\sec }^{2}}xdx}-\int\limits_{0}^{\dfrac{\pi }{4}}{{{\left( \tan x \right)}^{m-2}}dx}.............\left( 1 \right) \\
\end{align}$
But we have that ${{I}_{m}}=\int\limits_{0}^{\dfrac{\pi }{4}}{{{\left( \tan x \right)}^{m}}dx}$, so we can write $\int\limits_{0}^{\dfrac{\pi }{4}}{{{\left( \tan x \right)}^{m-2}}dx}$ as
${{I}_{m-2}}=\int\limits_{0}^{\dfrac{\pi }{4}}{{{\left( \tan x \right)}^{m-2}}dx}$
Substituting this value in the equation (1), we get
\[\begin{align}
& \Rightarrow {{I}_{m}}=\int\limits_{0}^{\dfrac{\pi }{4}}{{{\left( \tan x \right)}^{m-2}}{{\sec }^{2}}xdx}-{{I}_{m-2}} \\
& \Rightarrow {{I}_{m}}+{{I}_{m-2}}=\int\limits_{0}^{\dfrac{\pi }{4}}{{{\left( \tan x \right)}^{m-2}}{{\sec }^{2}}xdx}..........\left( 2 \right) \\
\end{align}\]
Now let us consider the integral on the right-hand side of the equation (2),
\[\int\limits_{0}^{\dfrac{\pi }{4}}{{{\left( \tan x \right)}^{m-2}}{{\sec }^{2}}xdx}\]
Let $\tan x=t$.
Let us consider the formula for differentiating \[d\left( \tan x \right)={{\sec }^{2}}xdx\]
Then differentiating it using the above formula we get, ${{\sec }^{2}}xdx=dt$
When $x=0$, we get $t=\tan 0=0$.
When $x=\dfrac{\pi }{4}$, we get $t=\tan \dfrac{\pi }{4}=1$.
So, changing the variables in the integral from x to t we get,
\[\int\limits_{0}^{\dfrac{\pi }{4}}{{{\left( \tan x \right)}^{m-2}}{{\sec }^{2}}xdx}=\int\limits_{0}^{1}{{{t}^{m-2}}dt}\]
Now let us consider the formula for integration,
$\int{{{x}^{n}}dx}=\dfrac{{{x}^{n+1}}}{n+1}$
Using the above formula, we can solve our integral as,
\[\begin{align}
& \Rightarrow \int\limits_{0}^{1}{{{t}^{m-2}}dt}=\left. \dfrac{{{t}^{m-1}}}{m-1} \right]_{0}^{1} \\
& \Rightarrow \int\limits_{0}^{1}{{{t}^{m-2}}dt}=\left( \dfrac{{{1}^{m-1}}}{m-1}-\dfrac{{{0}^{m-1}}}{m-1} \right) \\
& \Rightarrow \int\limits_{0}^{1}{{{t}^{m-2}}dt}=\left( \dfrac{1}{m-1}-\dfrac{0}{m-1} \right)=\dfrac{1}{m-1} \\
\end{align}\]
So, we get
\[\int\limits_{0}^{\dfrac{\pi }{4}}{{{\left( \tan x \right)}^{m-2}}{{\sec }^{2}}xdx}=\int\limits_{0}^{1}{{{t}^{m-2}}dt}=\dfrac{1}{m-1}\]
Substituting this value in equation (2), we get
\[\Rightarrow {{I}_{m}}+{{I}_{m-2}}=\int\limits_{0}^{\dfrac{\pi }{4}}{{{\left( \tan x \right)}^{m-2}}{{\sec }^{2}}xdx}=\dfrac{1}{m-1}\]
So, we get that for any $m$,
\[\Rightarrow {{I}_{m}}+{{I}_{m-2}}=\dfrac{1}{m-1}..........\left( 3 \right)\]
Now we need to find the value of ${{I}_{3}}+{{I}_{5}}+{{I}_{7}}+{{I}_{9}}$. Now let us divide it into two parts ${{I}_{3}}+{{I}_{5}}$ and ${{I}_{7}}+{{I}_{9}}$
Now let us consider ${{I}_{3}}+{{I}_{5}}$. I it similar to the value in the left-hand side of equation (3).
So, let us substitute the value $m=5$, then we get,
\[\begin{align}
& \Rightarrow {{I}_{5}}+{{I}_{5-2}}=\dfrac{1}{5-1} \\
& \Rightarrow {{I}_{5}}+{{I}_{3}}=\dfrac{1}{4}..............\left( 4 \right) \\
\end{align}\]
Now let us consider ${{I}_{7}}+{{I}_{9}}$ and as it is also similar to equation (3), let us substitute the value $m=9$, then we get,
\[\begin{align}
& \Rightarrow {{I}_{9}}+{{I}_{9-2}}=\dfrac{1}{9-1} \\
& \Rightarrow {{I}_{9}}+{{I}_{7}}=\dfrac{1}{8}..............\left( 5 \right) \\
\end{align}\]
So, adding the equations (4) and (5) we get,
$\begin{align}
& \Rightarrow {{I}_{3}}+{{I}_{5}}+{{I}_{7}}+{{I}_{9}}=\dfrac{1}{4}+\dfrac{1}{8} \\
& \Rightarrow {{I}_{3}}+{{I}_{5}}+{{I}_{7}}+{{I}_{9}}=\dfrac{3}{8} \\
\end{align}$
Hence, we get the value of ${{I}_{3}}+{{I}_{5}}+{{I}_{7}}+{{I}_{9}}$ as $\dfrac{3}{8}$.
Hence, the answer is Option A.
Note: We can also solve the value of ${{I}_{3}}$, ${{I}_{5}}$, ${{I}_{7}}$ and ${{I}_{9}}$ separately and add them to find the answer also. But it is a long and hectic way of solving the problem. The common mistake one makes is one might forget to change the limits when the variable is changed from x to t.
Complete step-by-step solution:
Let us consider the given integral, ${{I}_{m}}=\int\limits_{0}^{\dfrac{\pi }{4}}{{{\left( \tan x \right)}^{m}}dx}$
Let us consider the formula,
${{a}^{m+n}}={{a}^{m}}\times {{a}^{n}}$
Then we can write ${{\left( \tan x \right)}^{m}}$ as
$\begin{align}
& {{\left( \tan x \right)}^{m}}={{\left( \tan x \right)}^{m-2}}\times {{\left( \tan x \right)}^{2}} \\
& {{\left( \tan x \right)}^{m}}={{\left( \tan x \right)}^{m-2}}\times {{\tan }^{2}}x \\
\end{align}$
So, we can write the integral as,
${{I}_{m}}=\int\limits_{0}^{\dfrac{\pi }{4}}{\left( {{\left( \tan x \right)}^{m-2}}\times {{\tan }^{2}}x \right)dx}$
Now, let us consider the formula for trigonometric identity,
$\begin{align}
& \Rightarrow {{\sec }^{2}}x-{{\tan }^{2}}x=1 \\
& \Rightarrow {{\tan }^{2}}x={{\sec }^{2}}x-1 \\
\end{align}$
Using that we can write the integral as,
$\begin{align}
& \Rightarrow {{I}_{m}}=\int\limits_{0}^{\dfrac{\pi }{4}}{\left( {{\left( \tan x \right)}^{m-2}}\times \left( {{\sec }^{2}}x-1 \right) \right)dx} \\
& \Rightarrow {{I}_{m}}=\int\limits_{0}^{\dfrac{\pi }{4}}{\left( {{\left( \tan x \right)}^{m-2}}{{\sec }^{2}}x-{{\left( \tan x \right)}^{m-2}} \right)dx} \\
& \Rightarrow {{I}_{m}}=\int\limits_{0}^{\dfrac{\pi }{4}}{{{\left( \tan x \right)}^{m-2}}{{\sec }^{2}}xdx}-\int\limits_{0}^{\dfrac{\pi }{4}}{{{\left( \tan x \right)}^{m-2}}dx}.............\left( 1 \right) \\
\end{align}$
But we have that ${{I}_{m}}=\int\limits_{0}^{\dfrac{\pi }{4}}{{{\left( \tan x \right)}^{m}}dx}$, so we can write $\int\limits_{0}^{\dfrac{\pi }{4}}{{{\left( \tan x \right)}^{m-2}}dx}$ as
${{I}_{m-2}}=\int\limits_{0}^{\dfrac{\pi }{4}}{{{\left( \tan x \right)}^{m-2}}dx}$
Substituting this value in the equation (1), we get
\[\begin{align}
& \Rightarrow {{I}_{m}}=\int\limits_{0}^{\dfrac{\pi }{4}}{{{\left( \tan x \right)}^{m-2}}{{\sec }^{2}}xdx}-{{I}_{m-2}} \\
& \Rightarrow {{I}_{m}}+{{I}_{m-2}}=\int\limits_{0}^{\dfrac{\pi }{4}}{{{\left( \tan x \right)}^{m-2}}{{\sec }^{2}}xdx}..........\left( 2 \right) \\
\end{align}\]
Now let us consider the integral on the right-hand side of the equation (2),
\[\int\limits_{0}^{\dfrac{\pi }{4}}{{{\left( \tan x \right)}^{m-2}}{{\sec }^{2}}xdx}\]
Let $\tan x=t$.
Let us consider the formula for differentiating \[d\left( \tan x \right)={{\sec }^{2}}xdx\]
Then differentiating it using the above formula we get, ${{\sec }^{2}}xdx=dt$
When $x=0$, we get $t=\tan 0=0$.
When $x=\dfrac{\pi }{4}$, we get $t=\tan \dfrac{\pi }{4}=1$.
So, changing the variables in the integral from x to t we get,
\[\int\limits_{0}^{\dfrac{\pi }{4}}{{{\left( \tan x \right)}^{m-2}}{{\sec }^{2}}xdx}=\int\limits_{0}^{1}{{{t}^{m-2}}dt}\]
Now let us consider the formula for integration,
$\int{{{x}^{n}}dx}=\dfrac{{{x}^{n+1}}}{n+1}$
Using the above formula, we can solve our integral as,
\[\begin{align}
& \Rightarrow \int\limits_{0}^{1}{{{t}^{m-2}}dt}=\left. \dfrac{{{t}^{m-1}}}{m-1} \right]_{0}^{1} \\
& \Rightarrow \int\limits_{0}^{1}{{{t}^{m-2}}dt}=\left( \dfrac{{{1}^{m-1}}}{m-1}-\dfrac{{{0}^{m-1}}}{m-1} \right) \\
& \Rightarrow \int\limits_{0}^{1}{{{t}^{m-2}}dt}=\left( \dfrac{1}{m-1}-\dfrac{0}{m-1} \right)=\dfrac{1}{m-1} \\
\end{align}\]
So, we get
\[\int\limits_{0}^{\dfrac{\pi }{4}}{{{\left( \tan x \right)}^{m-2}}{{\sec }^{2}}xdx}=\int\limits_{0}^{1}{{{t}^{m-2}}dt}=\dfrac{1}{m-1}\]
Substituting this value in equation (2), we get
\[\Rightarrow {{I}_{m}}+{{I}_{m-2}}=\int\limits_{0}^{\dfrac{\pi }{4}}{{{\left( \tan x \right)}^{m-2}}{{\sec }^{2}}xdx}=\dfrac{1}{m-1}\]
So, we get that for any $m$,
\[\Rightarrow {{I}_{m}}+{{I}_{m-2}}=\dfrac{1}{m-1}..........\left( 3 \right)\]
Now we need to find the value of ${{I}_{3}}+{{I}_{5}}+{{I}_{7}}+{{I}_{9}}$. Now let us divide it into two parts ${{I}_{3}}+{{I}_{5}}$ and ${{I}_{7}}+{{I}_{9}}$
Now let us consider ${{I}_{3}}+{{I}_{5}}$. I it similar to the value in the left-hand side of equation (3).
So, let us substitute the value $m=5$, then we get,
\[\begin{align}
& \Rightarrow {{I}_{5}}+{{I}_{5-2}}=\dfrac{1}{5-1} \\
& \Rightarrow {{I}_{5}}+{{I}_{3}}=\dfrac{1}{4}..............\left( 4 \right) \\
\end{align}\]
Now let us consider ${{I}_{7}}+{{I}_{9}}$ and as it is also similar to equation (3), let us substitute the value $m=9$, then we get,
\[\begin{align}
& \Rightarrow {{I}_{9}}+{{I}_{9-2}}=\dfrac{1}{9-1} \\
& \Rightarrow {{I}_{9}}+{{I}_{7}}=\dfrac{1}{8}..............\left( 5 \right) \\
\end{align}\]
So, adding the equations (4) and (5) we get,
$\begin{align}
& \Rightarrow {{I}_{3}}+{{I}_{5}}+{{I}_{7}}+{{I}_{9}}=\dfrac{1}{4}+\dfrac{1}{8} \\
& \Rightarrow {{I}_{3}}+{{I}_{5}}+{{I}_{7}}+{{I}_{9}}=\dfrac{3}{8} \\
\end{align}$
Hence, we get the value of ${{I}_{3}}+{{I}_{5}}+{{I}_{7}}+{{I}_{9}}$ as $\dfrac{3}{8}$.
Hence, the answer is Option A.
Note: We can also solve the value of ${{I}_{3}}$, ${{I}_{5}}$, ${{I}_{7}}$ and ${{I}_{9}}$ separately and add them to find the answer also. But it is a long and hectic way of solving the problem. The common mistake one makes is one might forget to change the limits when the variable is changed from x to t.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

