
If the integral is given as ${{I}_{m}}=\int\limits_{0}^{\dfrac{\pi }{4}}{{{\left( \tan x \right)}^{m}}dx}$, then ${{I}_{3}}+{{I}_{5}}+{{I}_{7}}+{{I}_{9}}$ is equal to
(A) $\dfrac{3}{8}$
(B) $\dfrac{3}{7}$
(C) $\dfrac{2}{5}$
(D) $\dfrac{4}{9}$
Answer
522.9k+ views
Hint: We solve this question by first writing ${{\left( \tan x \right)}^{m}}$ as ${{\left( \tan x \right)}^{m-2}}\times {{\left( \tan x \right)}^{2}}$ in the integral ${{I}_{m}}$. Then we use the formula ${{\sec }^{2}}x-{{\tan }^{2}}x=1$ and write ${{I}_{m}}$ in terms of ${{I}_{m-2}}$. Then we integrate the remaining term by assuming $\tan x=t$ and then converting the integral in terms of t and find the value of integral using the formula $\int{{{x}^{n}}dx}=\dfrac{{{x}^{n+1}}}{n+1}$. Then we get a relation between ${{I}_{m}}$ and ${{I}_{m-2}}$. Then we substitute the values m=5 and m=9 and then adding them we get the required value.
Complete step-by-step solution:
Let us consider the given integral, ${{I}_{m}}=\int\limits_{0}^{\dfrac{\pi }{4}}{{{\left( \tan x \right)}^{m}}dx}$
Let us consider the formula,
${{a}^{m+n}}={{a}^{m}}\times {{a}^{n}}$
Then we can write ${{\left( \tan x \right)}^{m}}$ as
$\begin{align}
& {{\left( \tan x \right)}^{m}}={{\left( \tan x \right)}^{m-2}}\times {{\left( \tan x \right)}^{2}} \\
& {{\left( \tan x \right)}^{m}}={{\left( \tan x \right)}^{m-2}}\times {{\tan }^{2}}x \\
\end{align}$
So, we can write the integral as,
${{I}_{m}}=\int\limits_{0}^{\dfrac{\pi }{4}}{\left( {{\left( \tan x \right)}^{m-2}}\times {{\tan }^{2}}x \right)dx}$
Now, let us consider the formula for trigonometric identity,
$\begin{align}
& \Rightarrow {{\sec }^{2}}x-{{\tan }^{2}}x=1 \\
& \Rightarrow {{\tan }^{2}}x={{\sec }^{2}}x-1 \\
\end{align}$
Using that we can write the integral as,
$\begin{align}
& \Rightarrow {{I}_{m}}=\int\limits_{0}^{\dfrac{\pi }{4}}{\left( {{\left( \tan x \right)}^{m-2}}\times \left( {{\sec }^{2}}x-1 \right) \right)dx} \\
& \Rightarrow {{I}_{m}}=\int\limits_{0}^{\dfrac{\pi }{4}}{\left( {{\left( \tan x \right)}^{m-2}}{{\sec }^{2}}x-{{\left( \tan x \right)}^{m-2}} \right)dx} \\
& \Rightarrow {{I}_{m}}=\int\limits_{0}^{\dfrac{\pi }{4}}{{{\left( \tan x \right)}^{m-2}}{{\sec }^{2}}xdx}-\int\limits_{0}^{\dfrac{\pi }{4}}{{{\left( \tan x \right)}^{m-2}}dx}.............\left( 1 \right) \\
\end{align}$
But we have that ${{I}_{m}}=\int\limits_{0}^{\dfrac{\pi }{4}}{{{\left( \tan x \right)}^{m}}dx}$, so we can write $\int\limits_{0}^{\dfrac{\pi }{4}}{{{\left( \tan x \right)}^{m-2}}dx}$ as
${{I}_{m-2}}=\int\limits_{0}^{\dfrac{\pi }{4}}{{{\left( \tan x \right)}^{m-2}}dx}$
Substituting this value in the equation (1), we get
\[\begin{align}
& \Rightarrow {{I}_{m}}=\int\limits_{0}^{\dfrac{\pi }{4}}{{{\left( \tan x \right)}^{m-2}}{{\sec }^{2}}xdx}-{{I}_{m-2}} \\
& \Rightarrow {{I}_{m}}+{{I}_{m-2}}=\int\limits_{0}^{\dfrac{\pi }{4}}{{{\left( \tan x \right)}^{m-2}}{{\sec }^{2}}xdx}..........\left( 2 \right) \\
\end{align}\]
Now let us consider the integral on the right-hand side of the equation (2),
\[\int\limits_{0}^{\dfrac{\pi }{4}}{{{\left( \tan x \right)}^{m-2}}{{\sec }^{2}}xdx}\]
Let $\tan x=t$.
Let us consider the formula for differentiating \[d\left( \tan x \right)={{\sec }^{2}}xdx\]
Then differentiating it using the above formula we get, ${{\sec }^{2}}xdx=dt$
When $x=0$, we get $t=\tan 0=0$.
When $x=\dfrac{\pi }{4}$, we get $t=\tan \dfrac{\pi }{4}=1$.
So, changing the variables in the integral from x to t we get,
\[\int\limits_{0}^{\dfrac{\pi }{4}}{{{\left( \tan x \right)}^{m-2}}{{\sec }^{2}}xdx}=\int\limits_{0}^{1}{{{t}^{m-2}}dt}\]
Now let us consider the formula for integration,
$\int{{{x}^{n}}dx}=\dfrac{{{x}^{n+1}}}{n+1}$
Using the above formula, we can solve our integral as,
\[\begin{align}
& \Rightarrow \int\limits_{0}^{1}{{{t}^{m-2}}dt}=\left. \dfrac{{{t}^{m-1}}}{m-1} \right]_{0}^{1} \\
& \Rightarrow \int\limits_{0}^{1}{{{t}^{m-2}}dt}=\left( \dfrac{{{1}^{m-1}}}{m-1}-\dfrac{{{0}^{m-1}}}{m-1} \right) \\
& \Rightarrow \int\limits_{0}^{1}{{{t}^{m-2}}dt}=\left( \dfrac{1}{m-1}-\dfrac{0}{m-1} \right)=\dfrac{1}{m-1} \\
\end{align}\]
So, we get
\[\int\limits_{0}^{\dfrac{\pi }{4}}{{{\left( \tan x \right)}^{m-2}}{{\sec }^{2}}xdx}=\int\limits_{0}^{1}{{{t}^{m-2}}dt}=\dfrac{1}{m-1}\]
Substituting this value in equation (2), we get
\[\Rightarrow {{I}_{m}}+{{I}_{m-2}}=\int\limits_{0}^{\dfrac{\pi }{4}}{{{\left( \tan x \right)}^{m-2}}{{\sec }^{2}}xdx}=\dfrac{1}{m-1}\]
So, we get that for any $m$,
\[\Rightarrow {{I}_{m}}+{{I}_{m-2}}=\dfrac{1}{m-1}..........\left( 3 \right)\]
Now we need to find the value of ${{I}_{3}}+{{I}_{5}}+{{I}_{7}}+{{I}_{9}}$. Now let us divide it into two parts ${{I}_{3}}+{{I}_{5}}$ and ${{I}_{7}}+{{I}_{9}}$
Now let us consider ${{I}_{3}}+{{I}_{5}}$. I it similar to the value in the left-hand side of equation (3).
So, let us substitute the value $m=5$, then we get,
\[\begin{align}
& \Rightarrow {{I}_{5}}+{{I}_{5-2}}=\dfrac{1}{5-1} \\
& \Rightarrow {{I}_{5}}+{{I}_{3}}=\dfrac{1}{4}..............\left( 4 \right) \\
\end{align}\]
Now let us consider ${{I}_{7}}+{{I}_{9}}$ and as it is also similar to equation (3), let us substitute the value $m=9$, then we get,
\[\begin{align}
& \Rightarrow {{I}_{9}}+{{I}_{9-2}}=\dfrac{1}{9-1} \\
& \Rightarrow {{I}_{9}}+{{I}_{7}}=\dfrac{1}{8}..............\left( 5 \right) \\
\end{align}\]
So, adding the equations (4) and (5) we get,
$\begin{align}
& \Rightarrow {{I}_{3}}+{{I}_{5}}+{{I}_{7}}+{{I}_{9}}=\dfrac{1}{4}+\dfrac{1}{8} \\
& \Rightarrow {{I}_{3}}+{{I}_{5}}+{{I}_{7}}+{{I}_{9}}=\dfrac{3}{8} \\
\end{align}$
Hence, we get the value of ${{I}_{3}}+{{I}_{5}}+{{I}_{7}}+{{I}_{9}}$ as $\dfrac{3}{8}$.
Hence, the answer is Option A.
Note: We can also solve the value of ${{I}_{3}}$, ${{I}_{5}}$, ${{I}_{7}}$ and ${{I}_{9}}$ separately and add them to find the answer also. But it is a long and hectic way of solving the problem. The common mistake one makes is one might forget to change the limits when the variable is changed from x to t.
Complete step-by-step solution:
Let us consider the given integral, ${{I}_{m}}=\int\limits_{0}^{\dfrac{\pi }{4}}{{{\left( \tan x \right)}^{m}}dx}$
Let us consider the formula,
${{a}^{m+n}}={{a}^{m}}\times {{a}^{n}}$
Then we can write ${{\left( \tan x \right)}^{m}}$ as
$\begin{align}
& {{\left( \tan x \right)}^{m}}={{\left( \tan x \right)}^{m-2}}\times {{\left( \tan x \right)}^{2}} \\
& {{\left( \tan x \right)}^{m}}={{\left( \tan x \right)}^{m-2}}\times {{\tan }^{2}}x \\
\end{align}$
So, we can write the integral as,
${{I}_{m}}=\int\limits_{0}^{\dfrac{\pi }{4}}{\left( {{\left( \tan x \right)}^{m-2}}\times {{\tan }^{2}}x \right)dx}$
Now, let us consider the formula for trigonometric identity,
$\begin{align}
& \Rightarrow {{\sec }^{2}}x-{{\tan }^{2}}x=1 \\
& \Rightarrow {{\tan }^{2}}x={{\sec }^{2}}x-1 \\
\end{align}$
Using that we can write the integral as,
$\begin{align}
& \Rightarrow {{I}_{m}}=\int\limits_{0}^{\dfrac{\pi }{4}}{\left( {{\left( \tan x \right)}^{m-2}}\times \left( {{\sec }^{2}}x-1 \right) \right)dx} \\
& \Rightarrow {{I}_{m}}=\int\limits_{0}^{\dfrac{\pi }{4}}{\left( {{\left( \tan x \right)}^{m-2}}{{\sec }^{2}}x-{{\left( \tan x \right)}^{m-2}} \right)dx} \\
& \Rightarrow {{I}_{m}}=\int\limits_{0}^{\dfrac{\pi }{4}}{{{\left( \tan x \right)}^{m-2}}{{\sec }^{2}}xdx}-\int\limits_{0}^{\dfrac{\pi }{4}}{{{\left( \tan x \right)}^{m-2}}dx}.............\left( 1 \right) \\
\end{align}$
But we have that ${{I}_{m}}=\int\limits_{0}^{\dfrac{\pi }{4}}{{{\left( \tan x \right)}^{m}}dx}$, so we can write $\int\limits_{0}^{\dfrac{\pi }{4}}{{{\left( \tan x \right)}^{m-2}}dx}$ as
${{I}_{m-2}}=\int\limits_{0}^{\dfrac{\pi }{4}}{{{\left( \tan x \right)}^{m-2}}dx}$
Substituting this value in the equation (1), we get
\[\begin{align}
& \Rightarrow {{I}_{m}}=\int\limits_{0}^{\dfrac{\pi }{4}}{{{\left( \tan x \right)}^{m-2}}{{\sec }^{2}}xdx}-{{I}_{m-2}} \\
& \Rightarrow {{I}_{m}}+{{I}_{m-2}}=\int\limits_{0}^{\dfrac{\pi }{4}}{{{\left( \tan x \right)}^{m-2}}{{\sec }^{2}}xdx}..........\left( 2 \right) \\
\end{align}\]
Now let us consider the integral on the right-hand side of the equation (2),
\[\int\limits_{0}^{\dfrac{\pi }{4}}{{{\left( \tan x \right)}^{m-2}}{{\sec }^{2}}xdx}\]
Let $\tan x=t$.
Let us consider the formula for differentiating \[d\left( \tan x \right)={{\sec }^{2}}xdx\]
Then differentiating it using the above formula we get, ${{\sec }^{2}}xdx=dt$
When $x=0$, we get $t=\tan 0=0$.
When $x=\dfrac{\pi }{4}$, we get $t=\tan \dfrac{\pi }{4}=1$.
So, changing the variables in the integral from x to t we get,
\[\int\limits_{0}^{\dfrac{\pi }{4}}{{{\left( \tan x \right)}^{m-2}}{{\sec }^{2}}xdx}=\int\limits_{0}^{1}{{{t}^{m-2}}dt}\]
Now let us consider the formula for integration,
$\int{{{x}^{n}}dx}=\dfrac{{{x}^{n+1}}}{n+1}$
Using the above formula, we can solve our integral as,
\[\begin{align}
& \Rightarrow \int\limits_{0}^{1}{{{t}^{m-2}}dt}=\left. \dfrac{{{t}^{m-1}}}{m-1} \right]_{0}^{1} \\
& \Rightarrow \int\limits_{0}^{1}{{{t}^{m-2}}dt}=\left( \dfrac{{{1}^{m-1}}}{m-1}-\dfrac{{{0}^{m-1}}}{m-1} \right) \\
& \Rightarrow \int\limits_{0}^{1}{{{t}^{m-2}}dt}=\left( \dfrac{1}{m-1}-\dfrac{0}{m-1} \right)=\dfrac{1}{m-1} \\
\end{align}\]
So, we get
\[\int\limits_{0}^{\dfrac{\pi }{4}}{{{\left( \tan x \right)}^{m-2}}{{\sec }^{2}}xdx}=\int\limits_{0}^{1}{{{t}^{m-2}}dt}=\dfrac{1}{m-1}\]
Substituting this value in equation (2), we get
\[\Rightarrow {{I}_{m}}+{{I}_{m-2}}=\int\limits_{0}^{\dfrac{\pi }{4}}{{{\left( \tan x \right)}^{m-2}}{{\sec }^{2}}xdx}=\dfrac{1}{m-1}\]
So, we get that for any $m$,
\[\Rightarrow {{I}_{m}}+{{I}_{m-2}}=\dfrac{1}{m-1}..........\left( 3 \right)\]
Now we need to find the value of ${{I}_{3}}+{{I}_{5}}+{{I}_{7}}+{{I}_{9}}$. Now let us divide it into two parts ${{I}_{3}}+{{I}_{5}}$ and ${{I}_{7}}+{{I}_{9}}$
Now let us consider ${{I}_{3}}+{{I}_{5}}$. I it similar to the value in the left-hand side of equation (3).
So, let us substitute the value $m=5$, then we get,
\[\begin{align}
& \Rightarrow {{I}_{5}}+{{I}_{5-2}}=\dfrac{1}{5-1} \\
& \Rightarrow {{I}_{5}}+{{I}_{3}}=\dfrac{1}{4}..............\left( 4 \right) \\
\end{align}\]
Now let us consider ${{I}_{7}}+{{I}_{9}}$ and as it is also similar to equation (3), let us substitute the value $m=9$, then we get,
\[\begin{align}
& \Rightarrow {{I}_{9}}+{{I}_{9-2}}=\dfrac{1}{9-1} \\
& \Rightarrow {{I}_{9}}+{{I}_{7}}=\dfrac{1}{8}..............\left( 5 \right) \\
\end{align}\]
So, adding the equations (4) and (5) we get,
$\begin{align}
& \Rightarrow {{I}_{3}}+{{I}_{5}}+{{I}_{7}}+{{I}_{9}}=\dfrac{1}{4}+\dfrac{1}{8} \\
& \Rightarrow {{I}_{3}}+{{I}_{5}}+{{I}_{7}}+{{I}_{9}}=\dfrac{3}{8} \\
\end{align}$
Hence, we get the value of ${{I}_{3}}+{{I}_{5}}+{{I}_{7}}+{{I}_{9}}$ as $\dfrac{3}{8}$.
Hence, the answer is Option A.
Note: We can also solve the value of ${{I}_{3}}$, ${{I}_{5}}$, ${{I}_{7}}$ and ${{I}_{9}}$ separately and add them to find the answer also. But it is a long and hectic way of solving the problem. The common mistake one makes is one might forget to change the limits when the variable is changed from x to t.
Recently Updated Pages
Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Why is the cell called the structural and functional class 12 biology CBSE

a Tabulate the differences in the characteristics of class 12 chemistry CBSE

Who discovered the cell and how class 12 biology CBSE

Pomato is a Somatic hybrid b Allopolyploid c Natural class 12 biology CBSE
