
If the integral, $\int {\dfrac{{5\tan x}}{{\tan x - 2}}dx = x + a\ln \left| {\sin x - 2\cos x} \right| + k} $, then a is equal to:
$\left( a \right)$ 1
$\left( b \right)$ -2
$\left( c \right)$ -1
$\left( d \right)$ 2
Answer
511.5k+ views
Hint: In this particular question use the concept that tan x = (sin x/cos x) so according to this property simplify the integral then write the numerator of the simplified integral as 5 sin x = {(sin x – 2 cos x) + 2 (cos x + 2sin x)}, then separate the integral so use these concepts to reach the solution of the question.
Complete step-by-step answer:
Given integral
$\int {\dfrac{{5\tan x}}{{\tan x - 2}}dx = x + a\ln \left| {\sin x - 2\cos x} \right| + k} $
Consider the LHS of the above equation we have,
\[ \Rightarrow \int {\dfrac{{5\tan x}}{{\tan x - 2}}dx} \]
Let, \[I = \int {\dfrac{{5\tan x}}{{\tan x - 2}}dx} \]
Now as we know that tan x = (sin x/cos x) so use this property in the above equation we have,
Let, \[I = \int {\dfrac{{5\left( {\dfrac{{\sin x}}{{\cos x}}} \right)}}{{\dfrac{{\sin x}}{{\cos x}} - 2}}dx} \]
Now simplify it we have,
\[ \Rightarrow I = \int {\dfrac{{5\sin x}}{{\sin x - 2\cos x}}dx} \]
Now 5 sin x is written as, 5 sin x = {(sin x – 2 cos x) + 2 (cos x + 2sin x)} so apply this in the above integral we have,
\[ \Rightarrow I = \int {\dfrac{{\left\{ {\left( {\sin x - 2\cos x} \right) + 2\left( {\cos x + 2\sin x} \right)} \right\}}}{{\sin x - 2\cos x}}dx} \]
Now separate the integral we have,
\[ \Rightarrow I = \int {\dfrac{{\sin x - 2\cos x}}{{\sin x - 2\cos x}}dx} + 2\int {\dfrac{{\cos x + 2\sin x}}{{\sin x - 2\cos x}}dx} \]
Now simplify it we have,
\[ \Rightarrow I = \int {1dx} + 2\int {\dfrac{{\cos x + 2\sin x}}{{\sin x - 2\cos x}}dx} \].................. (1)
Now let, $\sin x - 2\cos x = t$................ (2)
Now differentiate equation (2) w.r.t x we have,
$ \Rightarrow \dfrac{d}{{dx}}\left( {\sin x - 2\cos x} \right) = \dfrac{{dt}}{{dx}}$
Now as we know that $\dfrac{d}{{dx}}\sin x = \cos x,\dfrac{d}{{dx}}\cos x = - \sin x$ so we have,
$ \Rightarrow \left( {\cos x + 2\sin x} \right) = \dfrac{{dt}}{{dx}}$
$ \Rightarrow \left( {\cos x + 2\sin x} \right)dx = dt$.................... (3)
Now substitute the values from equation (2) and (3) in equation (1) we have,
\[ \Rightarrow I = \int {1dx} + 2\int {\dfrac{1}{t}dt} \]
Now as we know that $\int {\dfrac{1}{x}dx} = \ln \left| x \right| + k,\int {1dx} = x + k$, where k is some arbitrary integration constant so we have,
\[ \Rightarrow I = x + 2\ln \left| t \right| + k\]
Now substitute the value of k in the above equation we have,
\[ \Rightarrow I = x + 2\ln \left| {\sin x - 2\cos x} \right| + k\]
$ \Rightarrow \int {\dfrac{{5\tan x}}{{\tan x - 2}}dx = x + 2\ln \left| {\sin x - 2\cos x} \right| + k} $
Now on comparing with, $\int {\dfrac{{5\tan x}}{{\tan x - 2}}dx = x + a\ln \left| {\sin x - 2\cos x} \right| + k} $ we have,
$ \Rightarrow a = 2$
So this is the required answer.
Hence option (d) is the correct answer.
Note: Given integral
$\int {\dfrac{{5\tan x}}{{\tan x - 2}}dx = x + a\ln \left| {\sin x - 2\cos x} \right| + k} $
Consider the LHS of the above equation we have,
\[ \Rightarrow \int {\dfrac{{5\tan x}}{{\tan x - 2}}dx} \]
Let, \[I = \int {\dfrac{{5\tan x}}{{\tan x - 2}}dx} \]
Now as we know that tan x = (sin x/cos x) so use this property in the above equation we have,
Let, \[I = \int {\dfrac{{5\left( {\dfrac{{\sin x}}{{\cos x}}} \right)}}{{\dfrac{{\sin x}}{{\cos x}} - 2}}dx} \]
Now simplify it we have,
\[ \Rightarrow I = \int {\dfrac{{5\sin x}}{{\sin x - 2\cos x}}dx} \]
Now 5 sin x is written as, 5 sin x = {(sin x – 2 cos x) + 2 (cos x + 2sin x)} so apply this in the above integral we have,
\[ \Rightarrow I = \int {\dfrac{{\left\{ {\left( {\sin x - 2\cos x} \right) + 2\left( {\cos x + 2\sin x} \right)} \right\}}}{{\sin x - 2\cos x}}dx} \]
Now separate the integral we have,
\[ \Rightarrow I = \int {\dfrac{{\sin x - 2\cos x}}{{\sin x - 2\cos x}}dx} + 2\int {\dfrac{{\cos x + 2\sin x}}{{\sin x - 2\cos x}}dx} \]
Now simplify it we have,
\[ \Rightarrow I = \int {1dx} + 2\int {\dfrac{{\cos x + 2\sin x}}{{\sin x - 2\cos x}}dx} \].................. (1)
Now let, $\sin x - 2\cos x = t$................ (2)
Now differentiate equation (2) w.r.t x we have,
$ \Rightarrow \dfrac{d}{{dx}}\left( {\sin x - 2\cos x} \right) = \dfrac{{dt}}{{dx}}$
Now as we know that $\dfrac{d}{{dx}}\sin x = \cos x,\dfrac{d}{{dx}}\cos x = - \sin x$ so we have,
$ \Rightarrow \left( {\cos x + 2\sin x} \right) = \dfrac{{dt}}{{dx}}$
$ \Rightarrow \left( {\cos x + 2\sin x} \right)dx = dt$.................... (3)
Now substitute the values from equation (2) and (3) in equation (1) we have,
\[ \Rightarrow I = \int {1dx} + 2\int {\dfrac{1}{t}dt} \]
Now as we know that $\int {\dfrac{1}{x}dx} = \ln \left| x \right| + k,\int {1dx} = x + k$, where k is some arbitrary integration constant so we have,
\[ \Rightarrow I = x + 2\ln \left| t \right| + k\]
Now substitute the value of k in the above equation we have,
\[ \Rightarrow I = x + 2\ln \left| {\sin x - 2\cos x} \right| + k\]
$ \Rightarrow \int {\dfrac{{5\tan x}}{{\tan x - 2}}dx = x + 2\ln \left| {\sin x - 2\cos x} \right| + k} $
Now on comparing with, $\int {\dfrac{{5\tan x}}{{\tan x - 2}}dx = x + a\ln \left| {\sin x - 2\cos x} \right| + k} $ we have,
$ \Rightarrow a = 2$
So this is the required answer.
Hence option (d) is the correct answer.
Complete step-by-step answer:
Given integral
$\int {\dfrac{{5\tan x}}{{\tan x - 2}}dx = x + a\ln \left| {\sin x - 2\cos x} \right| + k} $
Consider the LHS of the above equation we have,
\[ \Rightarrow \int {\dfrac{{5\tan x}}{{\tan x - 2}}dx} \]
Let, \[I = \int {\dfrac{{5\tan x}}{{\tan x - 2}}dx} \]
Now as we know that tan x = (sin x/cos x) so use this property in the above equation we have,
Let, \[I = \int {\dfrac{{5\left( {\dfrac{{\sin x}}{{\cos x}}} \right)}}{{\dfrac{{\sin x}}{{\cos x}} - 2}}dx} \]
Now simplify it we have,
\[ \Rightarrow I = \int {\dfrac{{5\sin x}}{{\sin x - 2\cos x}}dx} \]
Now 5 sin x is written as, 5 sin x = {(sin x – 2 cos x) + 2 (cos x + 2sin x)} so apply this in the above integral we have,
\[ \Rightarrow I = \int {\dfrac{{\left\{ {\left( {\sin x - 2\cos x} \right) + 2\left( {\cos x + 2\sin x} \right)} \right\}}}{{\sin x - 2\cos x}}dx} \]
Now separate the integral we have,
\[ \Rightarrow I = \int {\dfrac{{\sin x - 2\cos x}}{{\sin x - 2\cos x}}dx} + 2\int {\dfrac{{\cos x + 2\sin x}}{{\sin x - 2\cos x}}dx} \]
Now simplify it we have,
\[ \Rightarrow I = \int {1dx} + 2\int {\dfrac{{\cos x + 2\sin x}}{{\sin x - 2\cos x}}dx} \].................. (1)
Now let, $\sin x - 2\cos x = t$................ (2)
Now differentiate equation (2) w.r.t x we have,
$ \Rightarrow \dfrac{d}{{dx}}\left( {\sin x - 2\cos x} \right) = \dfrac{{dt}}{{dx}}$
Now as we know that $\dfrac{d}{{dx}}\sin x = \cos x,\dfrac{d}{{dx}}\cos x = - \sin x$ so we have,
$ \Rightarrow \left( {\cos x + 2\sin x} \right) = \dfrac{{dt}}{{dx}}$
$ \Rightarrow \left( {\cos x + 2\sin x} \right)dx = dt$.................... (3)
Now substitute the values from equation (2) and (3) in equation (1) we have,
\[ \Rightarrow I = \int {1dx} + 2\int {\dfrac{1}{t}dt} \]
Now as we know that $\int {\dfrac{1}{x}dx} = \ln \left| x \right| + k,\int {1dx} = x + k$, where k is some arbitrary integration constant so we have,
\[ \Rightarrow I = x + 2\ln \left| t \right| + k\]
Now substitute the value of k in the above equation we have,
\[ \Rightarrow I = x + 2\ln \left| {\sin x - 2\cos x} \right| + k\]
$ \Rightarrow \int {\dfrac{{5\tan x}}{{\tan x - 2}}dx = x + 2\ln \left| {\sin x - 2\cos x} \right| + k} $
Now on comparing with, $\int {\dfrac{{5\tan x}}{{\tan x - 2}}dx = x + a\ln \left| {\sin x - 2\cos x} \right| + k} $ we have,
$ \Rightarrow a = 2$
So this is the required answer.
Hence option (d) is the correct answer.
Note: Given integral
$\int {\dfrac{{5\tan x}}{{\tan x - 2}}dx = x + a\ln \left| {\sin x - 2\cos x} \right| + k} $
Consider the LHS of the above equation we have,
\[ \Rightarrow \int {\dfrac{{5\tan x}}{{\tan x - 2}}dx} \]
Let, \[I = \int {\dfrac{{5\tan x}}{{\tan x - 2}}dx} \]
Now as we know that tan x = (sin x/cos x) so use this property in the above equation we have,
Let, \[I = \int {\dfrac{{5\left( {\dfrac{{\sin x}}{{\cos x}}} \right)}}{{\dfrac{{\sin x}}{{\cos x}} - 2}}dx} \]
Now simplify it we have,
\[ \Rightarrow I = \int {\dfrac{{5\sin x}}{{\sin x - 2\cos x}}dx} \]
Now 5 sin x is written as, 5 sin x = {(sin x – 2 cos x) + 2 (cos x + 2sin x)} so apply this in the above integral we have,
\[ \Rightarrow I = \int {\dfrac{{\left\{ {\left( {\sin x - 2\cos x} \right) + 2\left( {\cos x + 2\sin x} \right)} \right\}}}{{\sin x - 2\cos x}}dx} \]
Now separate the integral we have,
\[ \Rightarrow I = \int {\dfrac{{\sin x - 2\cos x}}{{\sin x - 2\cos x}}dx} + 2\int {\dfrac{{\cos x + 2\sin x}}{{\sin x - 2\cos x}}dx} \]
Now simplify it we have,
\[ \Rightarrow I = \int {1dx} + 2\int {\dfrac{{\cos x + 2\sin x}}{{\sin x - 2\cos x}}dx} \].................. (1)
Now let, $\sin x - 2\cos x = t$................ (2)
Now differentiate equation (2) w.r.t x we have,
$ \Rightarrow \dfrac{d}{{dx}}\left( {\sin x - 2\cos x} \right) = \dfrac{{dt}}{{dx}}$
Now as we know that $\dfrac{d}{{dx}}\sin x = \cos x,\dfrac{d}{{dx}}\cos x = - \sin x$ so we have,
$ \Rightarrow \left( {\cos x + 2\sin x} \right) = \dfrac{{dt}}{{dx}}$
$ \Rightarrow \left( {\cos x + 2\sin x} \right)dx = dt$.................... (3)
Now substitute the values from equation (2) and (3) in equation (1) we have,
\[ \Rightarrow I = \int {1dx} + 2\int {\dfrac{1}{t}dt} \]
Now as we know that $\int {\dfrac{1}{x}dx} = \ln \left| x \right| + k,\int {1dx} = x + k$, where k is some arbitrary integration constant so we have,
\[ \Rightarrow I = x + 2\ln \left| t \right| + k\]
Now substitute the value of k in the above equation we have,
\[ \Rightarrow I = x + 2\ln \left| {\sin x - 2\cos x} \right| + k\]
$ \Rightarrow \int {\dfrac{{5\tan x}}{{\tan x - 2}}dx = x + 2\ln \left| {\sin x - 2\cos x} \right| + k} $
Now on comparing with, $\int {\dfrac{{5\tan x}}{{\tan x - 2}}dx = x + a\ln \left| {\sin x - 2\cos x} \right| + k} $ we have,
$ \Rightarrow a = 2$
So this is the required answer.
Hence option (d) is the correct answer.
Recently Updated Pages
Master Class 12 Biology: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

An example of ex situ conservation is a Sacred grove class 12 biology CBSE

Why is insulin not administered orally to a diabetic class 12 biology CBSE

a Tabulate the differences in the characteristics of class 12 chemistry CBSE

Why is the cell called the structural and functional class 12 biology CBSE

The total number of isomers considering both the structural class 12 chemistry CBSE
